Chapter 11

System Services
and SELinux

CERTIFICATION OBJECTIVES

11.01 Red Hat System Configuration 11.04 A Security and Configuration Checklist
11.02 Security-Enhanced Linux ve Two-Minute Drill
11.03 The Secure Shell Server Q&A SelfTest

his is a “big picture” chapter, focused on common tasks you'll perform on the job. These
tasks relate to the detailed configuration of RHCE-level services.

RHEL 7 incorporates basic system configuration files in the /etc/sysconfig directory,
called by various services and cron jobs. Integral to this approach is the configuration of
SELinux, as it includes a substantial number of custom options for various services.

538

Chapter 11 System Services and SELinux

You will test these tools on the one service that you might install on all bastion systems:
SSH. As it is the common service for all such systems, “black hat” hackers want to find a
weakness in SSH. Therefore, this chapter describes how you can make SSH services more
secure. This is the first chapter where you will use the three virtual machines created in

Chapters 1 and 2.

In this chapter, you'll also configure the boolean options used by SELinux to secure
various services. While SELinux is a common source of frustration, it is easier to handle
when you know the options that support the desired features.

In addition, this chapter covers the basic procedure to make sure various services
are operational, accessible from remote systems, and started the next time the system is

rebooted.

INSIDE THE EXAM

Inside the Exam

This section includes tasks that will be
repeated in the remainder of the book:

B Install the packages needed to provide
the service

Whether you're installing the Samba file
server or a DNS caching-only name server,
you will use the same tools. Yes, these are the
same rpm and yum commands, along with
the Package Management tools described in
Chapter 7. To save time, you might use these
commands to install the services described in
Chapters 12 through 17.

B Configure the service to start when the
system is booted

B Configure SELinux to support the
service

B Configure SELinux port-labeling to
allow services to use nonstandard ports

While the detailed configuration of individ-
ual services is the province of each chapter, the
steps required to configure a service to start
during the boot process are based on common
commands such as systemctl. In addition, the
configuration of SELinux to support a service
requires access to and the configuration of
similar options.

As suggested in the introduction, there’s a
special focus on the SSH service.

B Configure key-based authentication

Key-based authentication is a requirement
for both the RHCSA and RHCE exams, cov-
ered in Chapter 4. You may want to review that
chapter’s section titled “Securing SSH with
Key-Based Authentication” Given the impor-
tance of SSH security, in this chapter we also
cover the following task:

B Configure additional options described
in documentation

Red Hat System Configuration 539

CERTIFICATION OBJECTIVE 11.01

Red Hat System Configuration

In this section, you'll review basic information on how services are configured on Red

Hat systems. The actual process associated with a service is a daemon. Such daemons are
executable files, normally stored in the /usr/sbin directory. Red Hat configures custom
parameters and more in the /etc/sysconfig directory. These files are referenced by cron jobs
or systemd units.

Service Management

As discussed throughout the book, services are controlled by systemd service unit
configuration files. As described in Chapter 4, you can use systemctl to start, stop, or
restart a service. In many cases, you can use systemctl to reload a service with modified
configuration files, without kicking off currently connected users.

Although the real daemons are in the /usr/sbin directories, the systemd unit files
do more. They call the daemons with parameters configured in their unit files in the
/lib/systemd/system directory. The unit files then reference service-specific configuration
files.

RHEL 7 maintains compatibility with the traditional init-script system that was found in
earlier versions of Red Hat Enterprise Linux. Old-style init scripts are still located in the
/etc/rc.d/init.d directory and referenced by symbolic links in the /etc/rc.d/rcX.d subdirectories.
And the old service command in the /usr/sbin directory is a wrapper to the systemctl
command. In other words, the following commands are functionally identical:

systemctl restart sshd
service sshd restart

System Services

The files in the /etc/sysconfig directory are normally used with cron jobs and systemd
units. They're as varied as the unit configuration files included in the /lib/systemd/system
directory. As they include basic configuration options for each daemon, they drive the basic
operation of each service.

In most cases, each of these files supports the use of switches as described in the associated
man pages. For example, the /etc/sysconfig/httpd file can be used to set up custom options for
starting the Apache web server. In that file, the OPTIONS directive would pass switches to
the /usr/sbin/httpd daemon, as defined in the httpd man page.

540 cChapter11

System Services and SELinux

Bigger Picture Configuration Process

In general, when you configure a network service on Linux, run the general steps described
in this section. The actual steps you take may vary; for example, you may sometimes modify

SELinu

x options first. Sometimes, you'll want to test a service locally and remotely before

making sure the service starts automatically upon the next reboot.

1.

Install the service with a command such as rpm or yum. In some cases, you may
need to install additional packages.

Edit appropriate service configuration files. Usually, you have to modify and
customize several configuration files, such as for the Postfix e-mail server in the
/etc/postfix directory.

. Modify SELinux booleans. As discussed later in this chapter, most services have

more than one SELinux boolean. For example, you may modify different SELinux
booleans to allow the Samba file server to share files in read/write or read-only
mode.

. Start the service. You'll also need to make sure the service starts the next time the

system is booted, as discussed later in this chapter.

. Test the service locally. Make sure it works from the appropriate client(s) and on the

local system.

Set appropriate firewall policies, based on firewalld, TCP Wrappers, and service-
specific configuration files. Configure access to desired users and systems.

Test the service remotely. If the right ports are open, the service should work as
well as when you connect locally. With the right limits, the service should not be
accessible to undesired users or systems.

Available Configuration Tools

In general, it’s most efficient to configure various services from the command line. An

admini

strator who knows a service can set up basic operation in just a few minutes.

However, most administrators can'’t specialize in everything. To that end, Red Hat has
developed a number of configuration tools. When used properly, these tools will modify the
right configuration files. Some are installed with each service; others have to be installed
separately. Most of these tools are accessible from a GUI command-line interface with a
system-config-* command.

The

tools used in this book (and a couple more) are summarized in Table 11-1.

Red Hat Configuration Tools

Security-Enhanced Linux 541

Tool Command Function

Add/Remove gpk-application Front end to the yum command; manages
Software current software configuration
Authentication authconfig?, Configuration of user/group databases and
Configuration system-config-authentication client authentication

Date/Time Properties

system-config-date

Management of the current time zone,
NTP client

Firewall
Configuration

firewall-config

Configuration of firewalld-based firewalls,
masquerading, and forwarding

Language Selection

system-config-language

Language selection within the GUI

Network Connections

nm-connection-editor

Detailed network device configuration tool

Network
Management

nmtui

Network device/DNS client configuration at
the console

Printer Configuration

system-config-printer

Management of the CUPS print server

SELinux Management

system-config-selinux

Configuration of SELinux booleans, labels,
users, and so on

Software Update gpk-update-viewer Used to review and install available updates
to installed packages
User Manager system-config-users Management and configuration of users

and groups

Security-Enhanced Linux

Security-Enhanced Linux (SELinux) provides one more layer of security. Developed by the
U.S. National Security Agency, SELinux makes it more difficult for “black hat” hackers to
use or access files or services, even on compromised systems. SELinux assigns a context to
each object, such as a file, a device, or a network socket. The context of the object tells which
actions a process (or subject, in SELinux jargon) can perform.

Basic SELinux options were covered in Chapter 4, as this is also a requirement for the
RHCSA certification. For the RHCE, the focus of SELinux relates to various services.
Specifically, you need to know how to configure SELinux to support the Apache web server,

CERTIFICATION OBJECTIVE 11.02

542 Chapter 11 System Services and SELinux

the Domain Name System (DNS) service, the MariaDB database management system, the
Samba file server, the Simple Mail Transport Protocol (SMTP) service, the Secure Shell
(SSH) daemon, and the Network Time Protocol (NTP) service.

The requirements for each of these services are covered in this and later chapters of this
book. As the SELinux configuration for each service requires the use of the same commands
and tools, they’re covered here.

The key commands and tools discussed in this section are getsebool, setsebool, chcon,
restorecon, Is -Z, and the SELinux Management Tool. While these are the same tools used
in Chapter 4, the focus is different. To review, the getsebool and setsebool commands set
boolean options in the files of the /sys/fs/selinux/booleans directory. A boolean is a binary
option, 1 or 0, which corresponds to yes or no.

Options in the SELinux Booleans Directory

When configuring SELinux for a service, you'll generally make changes to boolean settings
in the /sys virtual filesystem. Take a look at the files in the /sys/fs/selinux/booleans directory.
The filenames are somewhat descriptive.

For example, the http_enable_homedirs boolean either allows or denies access to user
home directories via an Apache server. It is disabled by default. In other words, if you
configured the Apache server in Chapter 14 to serve files from user home directories
without changes to SELinux, the web server wouldn't be able to access the files.

Problems like this are a common source of frustration for administrators of RHEL
systems. They do all the work to configure a service, they test out the configuration, they
check their documentation, they think they’ve done everything right, and yet the service
doesn’t work as they want. The solution is to make SELinux a part of what you do to
configure a service.

As an example, run the following command:

$ cat /sys/fs/selinux/booleans/httpd enable homedirs
By default, the output should be
00

That’s two zeros. Supposedly one boolean is for the current setting, and the other is for
the permanent setting. In practice, the numbers don’t reflect the differences, at least for
RHEL 7, but the differences are still there. Because of this issue, the best way to see the
current state of a boolean is the getsebool command. For example, the command

$ getsebool httpd enable homedirs

leads to the following output:

httpd enable homedirs --> off

Security-Enhanced Linux 543

Bottom line, if the current setting is 0, the following command would activate httpd_
enable_homedirs only until the system is rebooted:

setsebool httpd enable homedirs 1

To repeat from Chapter 4, the way to make the change permanent from the command
line is with the setsebool -P command, which in this case is

setsebool -P httpd enable homedirs 1

Datch

Many service-related

SELinux booleans are described in local
documentation; for a list of associated man
pages, run the man -k selinux command.

Service Categories of
SELinux Booleans

There are nearly 300 pseudo-files in the /sys/fs/
selinux/booleans directory. As the filenames in

this directory are descriptive, you can use database filter commands such as grep to help
classify those booleans. Based on some of the services discussed in this book, the following
would be some appropriate filtering commands:

$ 1ls /sys/fs/selinux/booleans | grep http
$ 1ls /sys/fs/selinux/booleans | grep samba
$ 1s /sys/fs/selinux/booleans | grep nfs

You'll explore each of these categories of booleans in more detail shortly. For a brief
description of available booleans with their current status, run the semanage boolean -1
command. The semanage command is part of the policycoreutils-python package.

Boolean Configuration with the SELinux Management Tool

One of the benefits of GUI tools is a view of the “big picture” With the SELinux
Management tool, you can review the active booleans and quickly get a sense of whether
SELinux is set to allow few or many options associated with a service. As discussed in
Chapter 4, you can start the SELinux Management tool in a GUI desktop environment with
the system-config-selinux command. In the left pane, click Boolean. This opens access to a

544 Chapter 11 System Services and SELinux

m Filter booleans with the SELinux Management tool.

SELinux Administration ICEE
File Help
Select: % Q
Status Revert Customized
‘
File Labeling Filter |nttp
User Mapping Active | Module ¥ | Description Name
Selibebger M apache Allow httpd to access FUSE file systems httpd_use_fusefs
NEtwork Ror apache Allow Apache to run in stickshift mode, not transition to pas: httpd_run_stickshift
Rolicy Moduls apache Allow Apache to use mod.auth_pam httpd_mod.auth_pam
Procass Domein apache Unify HTTPD handling of all content files. httpd_unified
@ apache Allow httpd to read home directories httpd_enable_homedirs
apache Allow httpd to access cifs file systems httpd_use_cifs
M apache Allow Apache to modify public files used for public file transi httpd_anon_write
apache Dontaudit Apache to search dirs. httpd-dontaudit_search_dirs
M apache Allow Apache to query NS records httpd_verify_dns
|+ apache Allow httpd cgi support httpd_enable_cgi
apache Allow Apache to communicate with sssd service viadbus httpd_dbus_sssd
apache Allow httpd to run gpg httpd-use_gpg
apache Allow HTTPD scripts and modules to connect to databases ¢ httpd_can_network-connect-db
apache Allow htto daemon to connect to mvthty htted_can_connect_mvthtv
—‘ —

group of booleans in the right side of the window. Note the http filter added in Figure 11-1.
It filters the system for all booleans related to the Apache web server.

Compare the list to the output of the 1s /sys/fs/selinux/booleans | grep http command
described earlier. Note the differences. You'll actually see more Apache-related booleans in
the GUI tool because the filter in the SELinux Management tool filters by SELinux boolean
names and descriptions.

A number of categories are shown in the left pane of the SELinux Management Tool
window; they are described in the following sections. Most of the focus here will be on the
boolean category, where most of the SELinux policies are customized.

In some cases, a boolean is associated with a requirement for a SELinux file context. For
example, the httpd_anon_write boolean works only if associated files and directories are
labeled with the public_content_rw_t type. To set that type on, say, the /var/www/html/files
directory (and subdirectories), you would run the following command:

chcon -R -t public content rw t /var/www/html/files

Boolean Settings

The boolean settings discussed in the following sections fall into several categories. They’re
based on the services defined in the RHCE objectives. The SELinux settings do not stand

Security-Enhanced Linux 545

alone. For example, if you enable the httpd_enable_homedirs boolean, you'll still have to
configure the /etc/httpd/conf.d/userdir.conf file to support access to user home directories.
Only after both SELinux and Apache are configured with such support can users connect to
their home directories through that Apache server.

As there are no current SELinux booleans related to the Network Time Protocol (NTP)
service, there is no separate section for NTP booleans in this discussion.

Regular and Secure HTTP Services

A number of SELinux directives are available to help secure the Apache web server, as
summarized in the following list. Most are straightforward and self-explanatory. They are
ordered by the filename of the boolean, as shown in the /sys/fs/selinux/booleans directory.
While these booleans can apply to other web servers, Red Hat assumes the use of the
Apache web server. The descriptions specify the configuration if the boolean is active.

B httpd_anon_write Allows the web service to write to files labeled with the public_
content_rw_t type.

B httpd_builtin_scripting Permits access to scripts, normally associated with PHP.
Enabled by default.

B httpd_can_check_spam Supports the use of SpamAssassin for web-based e-mail
applications.

B httpd_can_network_connect Allows Apache scripts and modules access to
external systems over the network; normally disabled to minimize risks to other
systems.

B httpd_can_network_connect_cobbler Allows Apache scripts and modules to
access an external Cobbler installation server. If you don’t need to connect to any
services other than Cobbler, you should disable the httpd_can_network_connect
boolean.

B httpd_can_network_connect_db Allows connections to database server ports;
more specific than httpd_can_network_connect.

B httpd_can_network_memcache Enables access to a memcache server over the
network.

B httpd_can_network_relay Supports the use of the HTTP service as a forward or
reverse proxy.

B httpd_can_sendmail Allows Apache to send e-mails.

B httpd_dbus_avahi Supports access to the avahi service via the D-bus message
system. Disabled by default.

B httpd_enable_cgi Allows the running of Common Gateway Interface (CGI)
scripts. Enabled by default; requires scripts to be labeled with the httpd_sys_script_
exec_t file type.

546 cChapter11

System Services and SELinux

httpd_enable_ftp_server Allows Apache to listen on the FTP port (normally 21)
and work as an FTP server.

httpd_enable_homedirs Allows Apache to serve content from user home
directories via the UserDir directive.

httpd_execmem Supports programs such as those written in Java or Mono that
require memory addresses that are executable and writable.

httpd_mod_auth_ntlm_winbind Permits access to the Microsoft NT LAN
Manager (NTLM) and Winbind authentication databases; requires an installed and
active mod_auth_ntlm_winbind module for Apache.

httpd_mod_auth_pam Supports PAM access for user authentication; requires an
installed and active mod_auth_pam module for Apache.

httpd_read_user_content Allows the Apache web server to read all files in user
home directories.

httpd_setrlimit Allows changes to Apache file descriptor limits.
httpd_ssi_exec Supports executable Server Side Includes (SSIs).

httpd_sys_script_anon_write Allows HT TP scripts to write to files labeled with
the public_content_rw_t type.

httpd_tmp_exec Lets Apache run executable files from the /tmp directory.

httpd_tty_comm Supports access to a terminal; needed by Apache to prompt for a
password if the private key of a TLS certificate is password-protected.

httpd_unified Enables access to all httpd_*_t labeled files, whether they are read-
only, writable, or executable. Disabled by default.

httpd_use_cifs Supports access from Apache to shared Samba files and directories
labeled with the cifs_t file type.

httpd_use_fuse Supports access from Apache to FUSE filesystems, such as
GlusterFS volumes.

httpd_use_gpg Allows Apache to use GPG for encryption.

httpd_use_nfs Supports access from Apache to shared NFS files and directories
labeled with the nfs_t file type.

httpd_use_openstack Allows Apache to access OpenStack ports.

Name Service

The name service daemon (named) is based on the Berkeley Internet Name Domain
(BIND) software, which is the default RHEL 7 DNS service. If you maintain an authoritative
DNS zone, activate the named_write_master_zones boolean. Then local DNS software can

overwr

ite master zone files.

Security-Enhanced Linux 547

In general, this section does not apply to the RHCE because the objectives state that
all you need to do with DNS is to configure a caching-only name server. Such servers are
not authoritative for a specific domain. Therefore, the noted DNS boolean does not apply
because such DNS servers do not have master zone files.

RHEL includes the Unbound DNS resolver, a small service that you can install in place of
BIND to provide a caching name server.

MariaDB

Two SELinux booleans are solely related to the MariaDB database service. Typically, you don’t
need to change their default values.

B mysql _connect_any Allows MariaDB/MySQL to connect to all ports. Disabled by
default.

B selinuxuser_mysql_connect_enabled Allows SELinux users to connect to a local
MariaDB/MySQL server using a Unix domain socket. Disabled by default.

NFS

Some of the basic SELinux booleans associated with the Network File System (NFS) servers
are enabled by default, which allows you to share directories with the NFS server.

B nfs_export_all_ ro Allows shared NFS directories to be exported with read-only
permissions. Enabled by default.

B nfs_export_all_ rw Allows shared NFS directories to be exported with read/write
permissions. Enabled by default.

B use_nfs_home_dirs Supports access of home directories from remote NFS
systems. Disabled by default.

B virt_use_nfs Enables access from virtual guests to NFS mounted filesystems.

Samba

Samba booleans are generally not enabled by default. So in most configurations, you'll need
to activate one or more SELinux booleans to match changes to the Samba configuration
files. These booleans include the following:

B samba_create_home_dirs Allows Samba to create new home directories, such as
for users who connect from other systems, normally via the pam_mkhomedir.so PAM
module.

B samba_domain_controller Enables the configuration of the local Samba server as
a local domain controller on a Microsoft Windows—style network.

B samba_enable_home_dirs Supports the sharing of user home directories.

548 Chapter 11 System Services and SELinux

samba_export_all_ro Allows files and directories to be shared in read-only mode.
samba_export_all_rw Allows files and directories to be shared in read/write mode.

samba_run_unconfined Allows Samba to run unconfined scripts stored in the
/var/lib/samba/scripts directory.

samba_share_fusefs Supports sharing of filesystems mounted under FUSE
filesystems (fusefs).

samba_share_nfs Supports sharing of filesystems mounted under NFS.

smbd_anon_write Allows Samba to modify files on public directories configured
with the public_content_rw_t and public_content_r_t SELinux contexts.

use_samba_home_dirs Supports the use of a remote Samba server for local
home directories.

virt_use_samba Allows virtual machines to use files shared from Samba.

SMTP

The two SELinux booleans associated with SMTP services both work with the default
Postfix server. The httpd_can_sendmail boolean was previously described. The other Postfix
boolean is enabled by default:

SSH

postfix_local_write_mail_spool Allows Postfix to write to the local mail spool
directories

The SELinux booleans associated with SSH connections are listed next. All are disabled by
default:

ssh_chroot_rw_homedirs Allows a chroot-enabled SSH service to read and write
files from user home directories.

allow_ssh_keysign Allows host-based authentication; would not require
usernames or public/private passphrase-based authentication.

ssh_sysadm_login Supports access by users configured with the sysadm_r role.
This does not include the root administrative user; in general, it’s more secure to
log in as a regular user, connecting with passphrases, before authenticating with
administrative privileges.

SELinux File Contexts

Changes made with the chcon command are not permanent. While they do survive
a reboot, they do not survive a relabel. SELinux relabels of a system can happen when

Security-Enhanced Linux 549

SELinux is disabled and then re-enabled. The restorecon command relabels a target
directory. The configured SELinux contexts are stored in the /etc/selinux/targeted/
contexts/files directory.

The default version of this directory includes, among the others, three important files:

B file_contexts Baseline file contexts for the entire system

B file_contexts.homedirs File contexts for the /home directory and all
subdirectories

B media File contexts for removable devices that may be mounted after installation

If you need a change to file system contexts to survive a relabel, the semanage command
can help. For example, if you need to set up the /www directory for virtual websites, the
following command makes sure the file contexts are appropriate for that directory (and
subdirectories) even after a relabel:

semanage fcontext -a -t httpd sys content t "/www(/.*)?"

The noted command adds a file context rule to the file_contexts.local file in the
/etc/selinux/targeted/contexts/files directory. For a discussion of the meaning of the
(/.¥)? regular expression, refer to Chapter 4.

While the semanage command manages a variety of SELinux policies, the focus here is
on file contexts, as represented by the fcontext option. The command switches available are
described in Table 11-2.

Switch Description

Command
Switches for

semanage fcontext

-a Add

-d Delete

-D Delete all

-f File type

-1 List

-m Modify

-n No heading

-r Range

-s SELinux user name (used for user roles)
-t SELinux file type

550

Chapter 11 System Services and SELinux

SELinux Port Labeling

The SELinux policy controls every action that a process can execute on a certain object,
such as a file, a device, or a network socket. Opening a TCP socket and listening to a
network port is one of those actions you can control and restrict via the SELinux policy.

If one of the services covered in the previous section is configured to listen to a
nonstandard port, by default the SELinux targeted policy will deny this action. In fact,
SELinux uses labels to control not only access to files or devices, but also to network ports.

You can list all SELinux port labels by running the semanage command:

semanage port -1

Filtering for a certain string can help in identifying which ports a service is allowed to
listen to. As shown in the following example, the SSH service is restricted to listening to
port 22:

semanage port -1 | grep ssh
ssh port_t tcp 22

Similarly, the http_port_t label regulates the ports that Apache can listen to, whereas
http_cache_port_t identifies the ports allowed by web proxies:

semanage port -1 | grep http

http_cache port_t tep 8080, 8118, 8123, 10001-10010
http_cache port T udp 3130
http_port_t tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000

If you need to change a label to allow a service to listen to a nonstandard port, use the
semanage command. In the following example, the SELinux policy is modified to allow
Apache to listen to port 444:

semanage port -a -t http port t -p tcp 444

Needless to say, you can achieve the same result from the SELinux Management tool, as
shown in Figure 11-2.

EXERCISE 11-1

Configure a New Directory with Appropriate SELinux Contexts

In this exercise, you'll set up a new directory, /ftp, with SELinux contexts that match the
standard directory for FTP servers. This exercise demonstrates how this is done with the
chcon command, along with the effect of the restorecon and semanage commands.

1. Create the /ftp directory. Use the Is -Zd /ftp command to identify the SELinux
contexts on that directory. Contrast that with the contexts on the /var/ftp directory.

Security-Enhanced Linux 551

m Adding a network port with the SELinux Management Tool

File Help
Select:

Status
Boolean

File Labeling
User Mapping
SELinux User

Policy Module

Process Domain

Network Port

SELinux Administration

+
Add

®

Delete

Q

Group View Customized

@

Properties

Filter

SELinux Port
Type

MLS/MCs
~ Protocol 4 Port

Level

7001

afs3_callback-port_t

afs3_call Add Network Port:

afs_bos_ Port Number | 444

A5 Plorotocol | tep |
afs_fs_p r
SELinux Type |http_port_t
afs_fs_p
MLSMES [
afs_ka_pl| evel .

afs_pt_p|

| cancet || ok

afs_vl_pt

agentx_port_t udp

agentx_port_t tep

amanda_port_t udp 10080-10082

amanda_port_t tep 10080-10083

SRS S, 2 nnoa

Change the contexts on the /ftp directory to match those on the /var/ftp directory.
The most efficient method is with the following command:

chcon -R --reference /var/ftp /ftp
While the -R switch is not required, we include it to help you get used to the idea of
changing contexts recursively.

Run the Is -Zd /ftp command to review the changed contexts on that directory. It
should now match the contexts on the /var/ftp directory.

Run the following command to see what happens when SELinux is relabeled:
restorecon -Rv /ftp

What did this command do to the contexts of the /ftp directory?

To make changes to the /ftp directory permanent, you need help from the semanage
command, with the fcontext option. As there is no analog to the chcon --reference
command switch, the following command specifies the user role and file type, based
on the default settings for the /var/ftp directory:

semanage fcontext -a -s system u -t public content t "/ftp(/.*)?2"

552 Chapter 11 System Services and SELinux

6. Review the results. First, the semanage command does not change the current
SELinux contexts of the /ftp directory. Next, review the contents of file_contexts
Jocal in the /etc/selinux/targeted/contexts/files directory. It should reflect the
semanage command just executed.

7. Re-run the restorecon command from Step 4. Does it change the SELinux contexts
of the /ftp directory now?

CERTIFICATION OBJECTIVE 11.03

The Secure Shell Server

Red Hat Enterprise Linux installs the Secure Shell (SSH) server packages by default,
using the openssh-server, openssh-clients, and openssh RPMs. Chapter 2 addressed SSH
client programs, including ssh, scp, and sftp, whereas in Chapter 4 we discussed how

to secure SSH access with key-based authentication. The focus of this section is on the
SSH server. The secure daemon, sshd, listens for all inbound traffic on TCP port 22. The
SSH server configuration files are located in the /etc/ssh directory.

SSH Server Configuration Files

The configuration files of the SSH server are stored in the /etc/ssh directory. The functionality
of these files is summarized here:

B moduli Supports the Diffie-Hellman Group Exchange key method with prime
numbers and random key generators

B ssh_config Includes the configuration for the local SSH client, discussed in Chapter 2

B sshd_config Specifies the configuration of the SSH server, which is discussed in
detail later in this chapter

B ssh_host_ecdsa_key Includes the host private key for the local system, based on

the ECDSA algorithm

B ssh_host_ecdsa_key.pub Includes the host public key for the local system, based
on the ECDSA algorithm

B ssh_host_rsa_key Includes the host private key for the local system, based on the
RSA algorithm

B ssh_host _rsa_key.pub Includes the host public key for the local system, based on
the RSA algorithm

The Secure Shell Server 553

Configure an SSH Server

You don’t have to do much to configure an SSH server for basic operation. Install the
packages described earlier, activate the service, and make sure it’s active the next time the
system is rebooted. As discussed in Chapter 1, the standard SSH port (TCP 22) is open in
the default RHEL 7 firewall.

However, the RHCE objectives specify that you should be prepared to “configure
additional options described in the documentation” Because of the general nature of that
objective, this section will address every active and commented option in the default version
of the SSH server configuration file.

The SSH server configuration file is /etc/ssh/sshd_config. The commands in comments
are generally defaults. So if you want to set a nonstandard port for the SSH service, you
could change the commented directive

#Port 22

to something like this:
Port 2222

Assuming the firewall and SELinux allow access through this port, you'd then be able to
connect from a remote system with the ssh -p 2222 serverl.example.com command. If the
SSH server is different, substitute for serverl.example.com.

While the next commented line (# AddressFamily any) implies that the SSH server uses
both IPv4 and IPv6 addresses, it’s possible to limit access to one of these types of addresses
with the inet and inet6 keywords, which correspond to IPv4 and IPv6, respectively:

AddressFamily inet
AddressFamily ineté6

The default shown with the following ListenAddress directives is to listen for SSH
communications on all local IPv4 and IPv6 addresses:

#ListenAddress 0.0.0.0
#ListenAddress ::

You can limit SSH to listening on the IPv4 or IPv6 addresses of certain network cards. That
can help limit access to the SSH server to certain networks.

The next commented directive configures the SSH version. As noted earlier, SSH
version 1 is considered insecure. Version 2 is used by default:

#Protocol 2

Since SSH version 1 is disabled, you should not have to activate the following directive,
which sets the host key for version 1:

#HostKey /etc/ssh/ssh _host key

554 Chapter 11 System Services and SELinux

The standard RSA and ECDSA keys are documented in the next lines. ECDSA (Elliptic
Curve DSA) is considered more secure than the standard DSA protocol. Generally, there’s
no reason to change the locations of the keys:

HostKey /etc/ssh/ssh host rsa key
#HostKey /etc/ssh/ssh host dsa key
HostKey /etc/ssh/ssh host ecdsa key

The commented directives that follow relate to an SSH version 1 ephemeral key. Such a
server key would be regenerated every hour, with 1024 bits, but that would still be insecure.

#KeyRegenerationInterval 1h
#ServerKeyBits 1024

The next line specifies how often a session key is renegotiated. The default is to renegotiate
after the cipher’s default amount of data has been transmitted (“default”), with no time-based
limits (“none”).

#RekeyLimit default none

In the following lines, the first uncommented directive sends all log messages to the
appropriate log facility. Based on the configuration of the /etc/rsyslog.conf file, all messages
associated with the AUTHPRIV facility are logged to the /var/log/secure file. The level of
information is INFO and above.

#SyslogFacility AUTH
SyslogFacility AUTHPRIV
#LogLevel INFO

To limit denial-of-service (DOS) attacks, the default LoginGraceTime shown here is two
minutes. In other words, if a login process has not been completed in that time, the SSH
server automatically disconnects from the remote client.

#LoginGraceTime 2m

The directive that follows documents that the root administrative user can log in using SSH:

#PermitRootLogin yes

Direct root logins over SSH can be inherently insecure. If you've set up private/public
key—based passphrase authentication from an administrative account on a laptop system,
that’s a risk. A “black hat” hacker who gets a hold of that laptop system might then be able
to connect to the remote server with administrative privileges. For that reason, it’s usually
recommended to change that directive to the following:

PermitRootLogin no

The Secure Shell Server 555

Administrators who log in as regular users can use the su or sudo command as appropriate
to take administrative privileges with fewer risks. But if that’s not a requirement when you
take the RHCE exam, don’t make that change. In fact, it could be counted as an error on
the exam.

Next, it’s more secure to retain the following directive, especially with respect to private
and public keys:

#StrictModes yes

This directive checks that appropriate permissions are set on the user’s home directory and
SSH keys, before authorizing a login.

As noted with the following directive, the default number of authentication attempts per
connection is six. You could reduce that number for additional security, but the downside
is that you may get more false positives in the logs related to legitimate users who have
mistyped their password:

#MaxAuthTries 6

The following directive suggests that you could open up to 10 SSH sessions on a
connection:

#MaxSesssions 10

The following directive is used only with SSH version 1. Hopefully, you didn’t activate
that version of SSH.

#RSAAuthentication yes

On the other hand, the following directive is critical if you want to set up private/public
key—based authentication on the standard SSH protocol version 2:

#PubkeyAuthentication yes

The following directive confirms the use of the authorized_keys file on the system to
specify the public keys that can be used for authentication:

#AuthorizedKeysFile .ssh/authorized keys

The next directive applies only when a Certification Authority is used in the
authentication process:

#AuthorizedPrincipalsFile none

The two directives that follow are typically ignored:

#AuthorizedKeysCommand none
#AuthorizedKeysCommandRunAs nobody

556

Chapter 11 System Services and SELinux

The following Rhosts directive is generally not used because it applies to SSH version 1
and the less secure Remote Shell (RSH):

#RhostsRSAAuthentication no

While the following directive could support the use of the /etc/hosts.equiv file to limit
hosts that connect, that’s not normally encouraged. Nevertheless, it is one method for SSH
host-based security beyond what’s possible with an alternative such as TCP Wrappers, as
discussed in Chapter 10.

#HostbasedAuthentication no

As described in Chapter 4, the .ssh/known_hosts file stores public keys from remote
systems, and is read because of the following default:

#IgnoreUserKnownHosts no

The following directive may help administrators who are converting from RSH to SSH,
as they use .rhosts and .shosts files. However, because it’s not used by default, the following
option is sensible:

#IgnoreRhosts yes

For systems and users where private/public passphrases aren’t used, password-based
authentication is needed, as enabled by this default:

#PasswordAuthentication yes

In general, you should never permit empty passwords due to security risks:

#PermitEmptyPasswords no

Challenge-response authentication is normally associated with one-time passwords
common with remote terminals. While it can also work with PAM, it is normally disabled
on SSH:

ChallengeResponseAuthentication no

If you did set up a Kerberos system for the local network using SSH version 1, you would
have used some of the following options. The first two are almost self-explanatory, as they
can enable Kerberos verification of a user and set up alternative Kerberos or local password
authentication.

#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#KerberosTicketCleanup yes
#KerberosGetAFSToken no

The Secure Shell Server 557

With SSH version 2, the Generic Security Services Application Programming Interface
(GSSAPI) library is used for Kerberos authentication:

GSSAPIAuthentication = yes
The following directive destroys GSSAPI credentials upon logout:
GSSAPICleanupCredentials = yes

Normally, hostname checks are strict:

GSSAPIStrictAcceptorCheck = yes

Also, GSSAPI key exchange is allowed:

GSSAPIKeyExchange = yes

Authentication via PAM modules is supported:

UsePAM yes

With the following setting, the ssh-agent command can be used to forward private keys
to other remote systems:

#AllowAgentForwarding yes

With the next configuration line, TCP communications can be forwarded over an SSH
connection:

#AllowTCPForwarding yes

The GatewayPorts directive is normally disabled to keep remote hosts from connecting
to forwarded ports:

#GatewayPorts no

The following directive is important for anyone who needs remote access to a GUI tool
via X forwarding:

X1lForwarding yes

For example, when you are working from a remote location, you can connect to and open
GUI tools from your Red Hat system at home or in our office via SSH, using a command
similar to the following:

ssh -X michael@Maui.example.com

The next directive helps avoid conflicts between local and remote GUI displays. The
default should be adequate, unless there are more than 10 X11 displays in use.

#X11DisplayOffset 10

558

Chapter 11 System Services and SELinux

Normally, no changes are required to the following default, related to how the GUI
display is bound on the SSH server:

#X11UseLocalhost yes

When SSH users log in remotely, the following setting means they see the contents of the
/etc/motd file. Different messages are possible, based on the cron script configured in Chapter 9.

#PrintMotd yes

This is one useful setting for administrators because it documents the date and time of
the last login to the noted system:

#PrintLastLog yes

The TCPKeepAlive directive enables TCP keepalive messages, to avoid a session hanging
forever if a network connection, the SSH server, or any connected SSH client goes down:

#TCPKeepAlive yes

Generally, you should not enable this option because it is incompatible with X11Forwarding:

#UseLogin no

The privilege separation associated with the following directive sets up a separate process
after successful authentication, with the privileges of the authenticated user:

UsePrivilegeSeparation sandbox

The following directive does not supersede the default AuthorizedKeysFile setting
earlier in the file:

#PermitUserEnvironment no

Compression often helps speed communications over an SSH connection. The default
is to delay compression until the password is accepted or the private/public key pair is
matched to authenticate the user:

#Compression delayed

Sometimes, it’s important to have the SSH server make sure the user still wants to
transmit data. It’s how clients are disconnected from sensitive systems such as bank
accounts. But for an administrative connection, the following option disables such checks:

#ClientAliveInterval 0

If the ClientAlivelnterval is set to some number, the following directive specifies the
number of messages that may be sent before that client is automatically disconnected:

#ClientAliveCountMax 3

The Secure Shell Server 559

The following option for a patch level applies only to SSH version 1:

#ShowPatchLevel no

To minimize the risks of spoofing, the following directive checks remote hostnames
against a DNS server or an /etc/hosts file:

#UseDNS yes

The PID file listed here contains the process ID number of the running SSH server
process:

#PidFile /var/run/sshd.pid

When a “black hat” hacker tries to break into an SSH server, he may try to set up a bunch
of connections, all attempting to log in simultaneously. The following directive limits the
number of unauthenticated connections that the SSH server will work with. For an SSH
server on an administrative system, it’s something that you might consider reducing.

#MaxStartups 10
The following directive, if activated, would support device forwarding:
#PermitTunnel no

The following directive may seem like a good idea, but could be difficult to put into
practice. Any directory specified should contain all of the commands and configuration files
within that directory tree because the SSH session will be chroot’ed to the noted directory:

#ChrootDirectory none

The next directives can be used to specify additional text to append to the SSH protocol
banner and to set a default banner:

#VersionAddendum none
#Banner none

The following directives allow the client to set several environmental variables. The
details are normally trivial between two Red Hat Enterprise Linux systems:

AcceptEnv LANG LC CTYPE LC NUMERIC LC TIME LC COLLATE LC MONETARY LC MESSAGES
AcceptEnv LC_PAPER LC NAME LC ADDRESS LC_TELEPHONE LC_MEASUREMENT

AcceptEnv LC_IDENTIFICATION LC_ALL LANGUAGE

AcceptEnv XMODIFIERS

The final directive supports the use of SSH encryption for SFTP file transfers:

Subsystem sftp /usr/libexec/openssh/sftp-server

560 Chapter11

System Services and SELinux

EXERCISE 11-2

Run an SSH Server on a Nonstandard Port

In this exercise, you'll configure the OpenSSH server to listen to TCP port 2222. To
complete this objective, you'll have to modify not just the SELinux policy, but also the SSH
service and the firewall configuration.

1.

Show which ports the SSH service is allowed to listen to, based on the current
SELinux policy:

semanage port -1 | grep ssh
Run the following command to allow OpenSSH to listen to TCP port 2222:

semanage port -a -t ssh port t -p tcp 2222

. Open the /etc/ssh/sshd_config file and change the line

#Port 22
to
Port 2222

. Don't forget to allow TCP port 2222 through the default zone of the firewall, as

shown here:

firewall-cmd --permanent --add-port 2222/tcp
firewall-cmd --reload

. Reload the SSH service to apply the change:

systemctl reload sshd

If you have successfully completed the previous steps, you should be able to log in
from a remote system by running a command similar to the following:

$ ssh -p 2222 alex@192.168.122.50

Finally, restore the SSH configuration to its original settings.

User-Based Security for SSH

User-based security can be configured in the /etc/ssh/sshd_config file. To that end, we like
to add directives that limit the users allowed to access a system via SSH. The key is the
AllowUsers directive. You can limit by user with a directive such as

AllowUsers michael donna

The Secure Shell Server 561

Alternatively, you can limit access by each user from certain hosts with a directive such as
the following, which combines aspects of both user- and host-based security:

AllowUsers michael@192.168.122.50 donna@192.168.122.150

Be aware, if an access request is coming from a remote network, a masquerading firewall
may assign the IP address of the router to the remote system. In that case, you won't be able
to block a single system on a remote network.

You can include several related directives in the /etc/ssh/sshd_config file: AllowGroups,
DenyUsers, and DenyGroups.

If you want to limit access to SSH to a very few users, the AllowUsers directive is the
simplest solution. For the first AllowUsers directive just shown, only users michael and
donna can connect to this SSH server. A corresponding DenyUsers or DenyGroups directive
is not required. Even the root user can’t connect via SSH under those circumstances.

Although the SSH server would prompt other users for a password, access is denied even
when the remote user enters the correct password. The /var/log/secure log file would reflect
that with a message similar to the following:

User alex from 192.168.122.150 not allowed because not listed in AllowUsers.

Host-Based Security for SSH

Although there are methods for configuring host-based security through the SSH
configuration files, the process is complex. It requires changes to both servers and clients,
and involves risks that we believe are not necessary. It’s also possible to set up host-based
security through the local firewalld zone-based firewall.

The simplest method for host-based SSH security is based on TCP Wrappers, as
discussed in Chapter 10. For the purpose of this chapter, we've included the following
directive in /etc/hosts.allow, which accepts SSH connections from the noted network
addresses:

sshd : 127. 192.168.122.

To make sure access is limited to systems on the noted networks, you would also include
the following line in /etc/hosts.deny:

sshd : ALL

Of course, it would be more secure to include ALL : ALL in /etc/hosts.deny, but that may
block communications to legitimate services that you've configured. In addition, other ports
should already be protected by an appropriate firewall rule. So it may be an option to avoid
during a Red Hat exam.

562 Chapter 11 System Services and SELinux

CERTIFICATION OBJECTIVE 11.04

A Security and Configuration Checklist

A number of steps required to install, configure, and secure a service are repetitive. We
therefore summarize them in this section. If desired, you can use this section to help prepare
for Chapters 12 through 17. It will help you install required services, as well as make sure
those services are active and accessible through a firewall configured with the appropriate
open ports.

Installation of Server Services

The RHCE objectives directly address eight different services. This section addresses
some of the different ways you can install these services. If you've read Chapter 7, this should
be mostly review, but it will also give you an opportunity to prepare a system such as the
serverl.example.com virtual machine for testing in Chapters 12 through 17.

In this section, you'll review commands such as rpm and yum in the context of the server
services needed for upcoming chapters. If you prefer to use the GNOME Software tool, refer
to Chapter 7. Generally, you can use any of these options to install desired services.

Install the vsFTP Server with the rpom Command

In general, the installation of a service requires more than one RPM package. One exception
is the RPM package associated with the vsETP server. To that end, if you've mounted the
RHEL 7 DVD on the /media directory, you can install the vsETP server with the following
command (the version number may vary):

rpm -ivh /media/Packages/vsftpd-3.0.2-9.el7.x86_ 64 .rpm

Install Server Services with the yum Command
As discussed in Chapter 7, the yum command can be used to install packages with
dependencies. Sometimes, dependencies are simple. For example, for the DNS services
configured in Chapter 13, you may be more familiar with BIND, as opposed to the
Unbound DNS service.

One way to install the bind package with dependencies is with the following command:

yum install bind

As needed, you can use the yum install command to install a package in a way that
automatically identifies and installs all dependent packages.

A Security and Configuration Checklist 563

RHCE-Related Server Package Groups

Package Group Description

File and Storage Server Package group for the Samba, NFS, and iSCSI storage servers.

E-mail Server Support packages for SMTP and Internet Message Access Protocol
(IMAP) services; the default services are Postfix and Dovecot. The
sendmail server is an optional package in this group.

Network Infrastructure Server Environment group for the DNS, rsyslog, Samba, FTP, and other
services; all packages in this group are optional.

Network File System Client Includes clients for the automounter, Samba, and NFS.
Web Server Includes basic Apache web server packages.
MariaDB Database Server Includes only one mandatory package, mariadb-server.

Install Server Package Groups with the yum Command
Chapter 7 also describes how RHEL 7 packages are organized in groups. Each of those
groups have names, which can be identified with the yum group list command. The
relevant groups for the RHCE exam are listed in Table 11-3.

You can identify different packages and subgroups in each group with the group list
switch; for example, the following command lists the subgroups that are part of the Basic
Web Server environment group:

yum group info "Basic Web Server"

The output for RHEL 7 is shown in Figure 11-3. From there, you can identify the packages
included in each subgroup. For example, the following command lists the packages in the
web-server group:

yum group info web-server

The output is shown in Figure 11-4. Note that packages are classified in three categories:
mandatory, default, and optional. If you run the following command, only packages and
groups in the mandatory and default categories are installed:

yum group install "Web Server"

In most cases, that’s not a problem. However, sometimes you may need to install packages
that are listed as optional. Although there are ways to set up the installation of optional
packages with the group install switch, it’s easier for our purposes to just install the needed
packages separately by name.

564 Chapter 11 System Services and SELinux

m Packages in the Basic Web Server environment group

[root@serverl ~]# yum group info "Basic Web Server"
Loaded plugins: langpacks, product-id

Environment Group: Basic Web Server
Environment-Id: web-server-environment
Description: Server for serving static and dynamic internet content.
Mandatory Groups:
base
core
web-server

Optional Groups:
+backup-client
+directory-client
guest -agents
+hardware-monitoring
+java-platform
+large-systems
+load-balancer
+mariadb-client
+network-file-system-client
+performance
+perl -web
+php
+postgresql-client
+python-web
+remote-system-management
+web-servlet

In a similar fashion, you can install the Samba File Server (covered in Chapter 15) and
NES (covered in Chapter 16) with the following command:

yum groupinstall "File and Storage Server"

For Chapter 13, the Network Infrastructure Server package group includes packages
associated with logging and DNS. However, as all packages in this group are optional, the
yum group install command would not install any packages from that group. Fortunately,
the rsyslog package is already installed by default, even in a minimal RHEL 7 installation,
but you will want to install DNS to address one of the RHCE objectives. One way to set
up a DNS caching service for Chapter 13 is to install the Unbound DNS resolver with the
following command:

yum install unbound

A Security and Configuration Checklist 565

FIGURE 11-4 [root@serverl ~1# yum group info web-server
_ Loaded plugins: langpacks, product-id
Packagesin Group: Web Server

the Web Server

Group-Id: web-server
Description: Allows the system to act as a web server, and run Perl and Python

package group web applications.

Mandatory Packages:
httpd
Default Packages:
=crypto-utils
httpd-manual
mod_fcgid
mod_ssl
Optional Packages:
certmonger
Tibmemcached
memcached
mod_auth_kerb
mod_nss
mod_revocator
mod_security
mod_security crs
perl-CGI
perl-CGI-Session
python-memcached
sguid
[root@serverl ~1# |

For a number of server services, you should make sure that appropriate client packages
are installed. The Network File System client package group can help in that respect; the
following command would install clients for the automounter, Samba, and NFS:

yum group install "Network File System Client"

A different kind of network server relates to iSCSI storage. There are two package
groups of interest: the File and Storage Server already mentioned earlier, and the iSCSI
Storage Client.

Finally, a couple of packages of interest are not included in standard package groups.
They set up the NTP server and authentication to remote user directories. If they’re not
already installed, you'll need to install them. One method is with the following command:

yum install ntp sssd

We focus on command-line installation methods because they are generally fastest. Of
course, you could install packages with the GUI Add/Remove Software tool discussed in
Chapter 7.

566 Chapter 11 System Services and SELinux

Basic Configuration

While the current RHCE objectives are more specific than ever, it’s best to keep what you
change as simple as possible. As noted in the objectives, you'll be asked to “configure the
service for basic operation”” Basic operation is easier to set up. It is frequently more secure.
If you do less to configure a service, it takes less time. You'll have a better chance to finish
the exam. You'll be able to do more on the job.

The details associated with basic configuration are covered in upcoming chapters.

Make Sure the Service Survives a Reboot

In Chapter 5, you looked at when a service starts or does not start during the boot process.
The simplest method is associated with the systemctl command. To review, the
systemctl list-unit-files --type=service command lists all service units and whether

they are activated at boot. For the services discussed in the following chapters, once the
appropriate packages have been installed, you'll want to make sure they start during the
boot process with the following commands:

systemctl enable httpd
systemctl enable iscsi
systemctl enable mariadb
systemctl enable nfs-server
systemctl enable nmb
systemctl enable ntpd
systemctl enable rsyslog
systemctl enable smb
systemctl enable sshd
systemctl enable target
systemctl enable unbound

H oH H H H H H H H H H

This is just a list. On an actual exam, install just the services you're asked to install.

Of course, during an exam, you might be told to make sure a service does not start during
the boot process. Also, keep in mind that in a production environment the installation of so
many services on a single system is rare because of the security risks.

Review Access Through Layers of Security

The first place to check a service is from the local system. For example, if you can connect to
an Apache server from that system, you've set up basic configuration of Apache.

If you have problems connecting locally or remotely, you may have issues related to
SELinux or various user- and host-based firewalls. For issues beyond SELinux, refer to the
network command tools installed in Chapter 2: telnet, elinks, and nmap.

A Security and Configuration Checklist 567

Troubleshoot SELinux Issues

If the configuration is good but still does not work, that suggests a SELinux issue, typically
in one of the two following areas:

B Boolean settings For example, to enable Apache server access to user home
directories, enable the SELinux boolean httpd_enable_homedirs.

B SELinux file contexts Make sure the contexts of files and directories match those
of default directories. Assume you've set up a virtual web host on the /virtual/host
directory. Run the Is -Z /virtual/host command. The file contexts you see in that
output should match what you see from the Is -Z /var/www/html command.

Next, test the connection from a remote system:

Troubleshoot Zone-Based Firewall Issues

If a system allows access for server communications to the default zone, you'll see it in the
output to the firewall-cmd --list-all command. To review the configuration for all zones,
run firewall-cmd --list-all-zones.

While you can use the Firewall Configuration tool described in Chapters 4 and 10, you
need to know how to configure firewalls from the command line.

If a port or server is not open in the firewall, an attempt to connect to a service is
rejected. For example, for the SSH server you may get a message like the following:

ssh: connect to host serverl.example.com port 22: No route to host

To verify whether connectivity to a remote service is operational, you can use the telnet
or nmap command. For example, run the following command to verify connectivity to the
HTTP port on the server 192.168.122.50:

$ telnet 192.168.122.50 80
If you can successfully connect to the server, you will see the following reply:
Escape character is '"]"

Similarly, you can use nmap, as shown next, to verify connectivity to the HT TP service
on TCP port 80:

$ nmap -p 80 192.168.122.50
If you can successfully connect to the service, you will see the following output:

PORT STATE SERVICE
80/tcp open http

568 Chapter 11 System Services and SELinux

EXERCISE 11-3

Practice Troubleshooting Network Connectivity Issues

In this exercise we explore the effects of different network and firewalld misconfigurations
on a running service. We assume that you have a working SSH service running on serverl
.example.com.

1. From another host, run the ping 192.168.122.50 command to test the connection to
the server.

2. Now run the following command on serverl:
systemctl stop network

Run the ping command again. What is the output?
3. Restore network connectivity with systemctl start network.

4. From the client, use the telnet or nmap command to check the connection on the
SSH server port:

S telnet 192.168.122.50 22
If successful, you'll see the following output:
Escape character is '*]'

Type in the quit command. You should see an error message from the OpenSSH
server, followed by this message:

Connection closed by foreign host.
Block connectivity to the SSH service on serverl with the following command:
firewall-cmd --remove-service=ssh

5. Try the ping and telnet commands again. What output do you see?
6. Restore connectivity on the firewall by running firewall-cmd --reload.
7. Block the IP address of the client (assuming it is 192.168.122.1), as shown here:

firewall-cmd --add-rich-rule='rule family=ipv4 source «
address=192.168.122.1 drop'

8. Try the ping and telnet commands again. What output do you see?

A Security and Configuration Checklist 569

In general, if the telnet or nmap command does not connect to the specified port, you
may have one of the following firewall issues:

B The firewalld zone-based firewall may be blocking the desired port.

B The firewalld zone-based firewall may be limiting access to the client.

B The TCP Wrappers system discussed in this chapter may also be limiting access to
specific clients and users, by service.

B Some servers include configuration files that also limit access based on users, IP
addresses, and hostnames.

Troubleshoot TCP Wrappers Firewall Issues
In contrast, if the service is protected by TCP Wrappers, the error message behavior is
different. For this section, we configured the /etc/hosts.allow and /etc/hosts.deny files
on the serverl.example.com system to allow access only from .example.com systems on
the 192.168.122.0/24 network. That means access is not allowed from systems such as
outsiderl.example.org on IP address 192.168.100.100.

In that case, when we tried accessing the serverl.example.com system with the ssh
command, we received the following error message:

ssh_exchange_identification: Connection closed by remote host

In contrast, the telnet serverl.example.com 22 command from the same system returns
the following messages, which stops for a moment:

Trying 192.168.122.50
Connected to serverl.example.com.
Escape character is '*]"

For a few moments, it appears the system is about to connect, but then the block from
TCP Wrappers results in the following message:

Connection closed by foreign host.

EXERCISE 11-4

Review the Different Effects of firewalld and TCP Wrappers

This exercise assumes an operational vsF TP server, similar to the one configured in Chapter 1
for installations. Configure that vsFTP server on the serverl.example.com system. Make sure
the firewall blocks traffic on the standard FTP port, TCP 21, and then check the connection
from a blocked system, outsiderl.example.org. To review, these systems as configured in
Chapters 1 and 2 are on IP addresses 192.168.122.50 and 192.168.100.100, respectively.

570 Chapter11

System Services and SELinux

Next, open TCP port 21 on the firewall. In addition, limit access using TCP Wrappers.
This exercise is complex; each numbered step requires several commands or actions. In
some cases, the required command is implied.

1.

10.

11.

If it is not already installed, install the vsFTP server, as discussed in the chapter.
Make sure that server is active with the systemctl start vsftpd command.

Start the Firewall Configuration tool with the firewall-config command. Make sure
FTP is not activated in the list of services in the default zone. Make sure the changes
are applied and then exit from the Firewall Configuration tool.

. Try connecting to the vsETP server from the local system with a command such as

Iftp localhost. It should work, which you can confirm from the Iftp localhost:/>
prompt with the Is command. Exit from the vsFTP server with the quit command.
Move to the outsiderl.example.org system. It’s acceptable to connect to it via SSH;
in fact, that may be the only method available to connect to that system on the exam
(and in real life).

. Try pinging the system running the vsFTP server with the ping 192.168.122.50

command. Remember to press CTRL-C to stop the process. Try connecting to
the vsFTP server with the Iftp 192.168.122.50 command. What happens? Try to
connect to the system with the telnet 192.168.122.50 21 command. What happens?

Return to the serverl.example.com system. Open the Firewall Configuration tool
again, and this time make FTP a trusted service. Don’t forget to apply the change
before exiting from the Firewall Configuration tool.

Open the /etc/hosts.allow file and include the following entry:

vsftpd : localhost 127. 192.168.122.50

. Open the /etc/hosts.deny file and include the following entry:

vsftpd : ALL

Return to the outsiderl.example.com system as discussed in Step 4. Repeat Step 5.
What happens after each attempt to connect?

Go back to the serverl.example.com system. Open the /etc/hosts.allow and
/etc/hosts.deny files and delete the lines created in Steps 7 and 8.

Once again, move to the outsiderl.example.org system. Repeat Step 5. Both
commands should result in a successful connection. The quit command should exit
in both cases.

. BONUS: Review connections via the contents of the /var/log/secure file. Review the

originating IP addresses in that file. Use that information to configure firewalld to
deny access to all but one IP address.

Certification Summary 571

SCENARIO & SOLUTION

You want to limit SSH access to two users.

Specify the desired usernames in the SSH server
configuration file, /etc/ssh/sshd_config, with the
AllowUsers directive.

You're told to limit SSH access to systems on
the 192.168.122.0/24 network.

You can use TCP Wrappers. Configure /etc/hosts
.allow to allow access to the sshd daemon from
systems on the noted network. Configure /etc/hosts
.deny to restrict access to sshd from ALL systems.

You need to make sure SELinux user and file
types survive a relabel.

Use the semanage fcontext -a command to specify
the desired user and file types for desired directories.

You need to run Apache on a nonstandard
network port.

Change the port definition with semanage port -a.
Don't forget to configure the service to run on a
different port and to check firewall rules.

A server is accessible only locally.

Check security options for firewalld rules and TCP
Wrappers; make sure the service allows remote access.

A server is properly configured but still is not
accessible.

Check for SELinux booleans and file label types.

CERTIFICATION SUMMARY ‘

This chapter focused on the general steps required to configure, secure, and access various
services. Daemons are controlled by unit files in the /lib/systemd/system directory, and by
configuration files in /etc/sysconfig. Access to various aspects of server services may be
controlled by different SELinux booleans.

The SSH server configuration files are located in the /etc/ssh directory. The sshd_config
configuration file includes a substantial number of options for configuring that service.

To configure a service, you'll need to install the right packages and make sure the service
is active after the next reboot. You'll also need to navigate through a variety of available
security options, including SELinux, zone-based firewalls, and TCP Wrappers—based
security in the /etc/hosts.allow and /etc/hosts.deny files.

572 Chapter11

System Services and SELinux

TWO-MINUTE DRILL

The following are some of the key points from the certification objectives in Chapter 11.

Red Hat System Configuration

Q

a

a

a

System services can be started by systemctl, based on unit configuration files in the
/lib/systemd/system and /etc/systemd/system directories.

System services use basic configuration files in the /etc/sysconfig directory. Such files
often include basic parameters for service daemons.

When configuring a network server, you'll need to be concerned about SELinux
booleans, zone-based firewalls, TCP Wrappers, and more.

Services should be tested locally and remotely.

Security-Enhanced Linux

a
a

a

Individual services are frequently protected by multiple SELinux booleans.

SELinux booleans are stored in the /sys/fs/selinux/booleans directory, with
descriptive filenames.

SELinux booleans can be changed with the setsebool -P command or the SELinux
Management tool. From the command line, make sure to use the -P switch;
otherwise, the change won’t survive a reboot.

SELinux file contexts can be changed with the chcon command. However, the
change does not survive a relabel unless the new context rule is made persistent with
the semanage fcontext -a command. Changes are documented in the file_contexts
Jocal file, in the /etc/selinux/targeted/contexts/files directory.

SELinux port labels can be modified with the semanage port -a command to allow
services to listen to nonstandard network ports.

The Secure Shell Package

a

a

SSH server configuration files in the /etc/ssh directory include client and server files,
along with public and private RSA and ECDSA host key pairs.

The SSH server configuration file, sshd_config, can be set up with user-based
security.

The AllowUsers directive in sshd_config specifies which users are allowed to log in
via SSH.

The easiest way to set up host-based SSH security is through TCP Wrappers.

SelfTest 573

A Security and Configuration Checklist

O You'll need to install a number of services to prepare for the RHCE exam with
commands such as rpm and yum.

O One way to make sure services survive a reboot is with the systemctl command; a
full list of such commands related to RHCE services is provided in the chapter.

0 You'll need to configure access to a service through layers of security, including
SELinux, zone-based firewalls, and TCP Wrappers.

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear

in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

Red Hat System Configuration

1. Which directory includes configuration files that specify startup options for various service
daemons?

2. What command reloads the configuration of the SSH server without stopping the service?

Security-Enhanced Linux

3. What directory contains boolean options associated with SELinux? Specify the full path.

4. What man page contains SELinux options associated with NFS daemons?

574 Chapter 11 System Services and SELinux

5. What command restores the default SELinux file context on a given directory?

6. What file is modified when you run the semanage fcontext -a command? Hint: it’s in the
/etc/selinux/targeted/contexts/files directory.

7. Which command lists the current SELinux port label configuration for the MariaDB (MySQL)
service?

The Secure Shell Server

8. What directory contains the OpenSSH server configuration file and host keys?

9. What directive specifies the port number of the local SSH server in the associated
configuration file?

10. What directive specifies a list of allowed users in the SSH server configuration file?

A Security and Configuration Checklist

11. What command displays a list of available environment groups?

12. What command can help the abcd service survive a reboot?

LAB QUESTIONS

Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’s assumed that you're running these exercises on KVM-based virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this and future chapters are
available from the media that accompanies the book, in the Chapter11/ subdirectory. In case you
haven’t yet set up RHEL 7 on a system, refer to Chapter 1 for installation instructions.

The answers for the labs follow the Self Test answers for the fill-in-the-blank questions.

Self Test Answers 575

SELF TEST ANSWERS

Red Hat System Configuration
1. Slight trick question: the file in the /etc/sysconfig directory, as well as unit files in /lib/systemd/system
and /etc/systemd/system, can specify options for various service daemons at startup.
2. The command to reload the configuration of the SSH service is

systemctl reload sshd

Security-Enhanced Linux

The directory with SELinux booleans is /sys/fs/selinux/booleans.
The nfsd_selinux man page contains some SELinux booleans for that service.
The command that restores the default file context on a given directory is restorecon.

The name of the file that is modified by the noted command is file_contexts.local.

N o v pw

One acceptable answer is

semanage port -1 | grep mysgl

The Secure Shell Server

8. The OpenSSH server configuration file and host keys are included in the /etc/ssh directory.
9. The directive is Port.
10. The directive is AllowUsers.

A Security and Configuration Checklist

11. The command that lists all available environment groups is yum group list.

12. Assuming the abcd service is also associated with a service unit in the /lib/systemd/system
directory, the command that would help it survive a reboot is systemctl enable abcd.

576 Chapter 11 System Services and SELinux

LAB ANSWERS

Lab 1

This lab should give you an idea of what can be done with /etc/sysconfig files and how those files
change the way a daemon is started. This lab should also demonstrate the risks; the wrong change, such
as that shown in the lab, means that the service won’t work.

Lab 2

Although SSH key-based authentication was covered in the first part of this book, it is also a
requirement for the RHCE exam. If you don’t remember how to configure key-based authentication,
review Chapter 4. There are three measures of success in this lab:

B There will be an id_rsa file and an id_rsa.pub file in the client /home/hawaii/.ssh directory.

B You'll be able to connect to the remote system without a password. Just enter the “I love Linux!”
passphrase (without quotes) when prompted.

B You'll find the contents of the user’s id_rsa.pub file in the remote authorized_keys file in the
/home/hawaii/.ssh directory.

Unsecure permissions are one of the most common reasons of failure for SSH key-based authentica-
tion. Your ~/.ssh directory should have octal permissions 0700, whereas the private key and the autho-
rized_keys files should have the permissions bits set to 0600.

Lab 3

Much as in Lab 2, there are three measures of success in this lab:

B There will be an id_ecdsa and an id_ecdsa.pub file in the client /home/tonga/.ssh directory.

B You'll be able to connect to the remote system without a password. Just enter the “I love Linux!”
passphrase when prompted.

B You'll find the contents of the client’s id_ecdsa.pub file in the remote authorized_keys file in the
/home/hawaii/.ssh directory.

Lab 4
The simplest way to implement this lab is to add the following directive to the /etc/ssh/sshd_config file:

AllowUsers hawaii

Lab Answers 577

Just don’t forget to reload or restart the SSH service after making the change; otherwise, other users
will still have access.

In case you're curious, user tonga on the client is still able to access the hawaii account on the SSH
server with the passphrase because connections to the user hawaii account are being allowed. The iden-
tity of the remote account does not matter to the AllowUsers directive.

If you've made too many changes to the /etc/ssh/sshd_config file and want to start fresh, move that
file and run the yum reinstall openssh-server command. It'll set up a fresh copy of that configuration
file. If you want to connect from other accounts in the future, make sure the AllowUsers hawaii direc-
tive is disabled.

Oh yes, did you need to activate the PermitRootLogin no directive to prevent SSH logins to the root
account?

Lab 5

Success in this lab is confirmed by a good SSH connection from client to server. If you just want to
make sure, use the ssh -p 8122 command from the client. If you haven't disabled the AllowUsers
directive on the server, that connection would have to be to the hawaii account.

In addition, this lab should give you a sense of the effort required to set up obscure ports. However,
although the nmap command would detect a listening application on port 8122, it would be obscure;
the relevant output would be

PORT STATE SERVICE
8122/tcp open unknown

Go to the client system and try connecting to the SSH server. Remember, you'll also need to open
port 8122 in the firewall of the SSH server.

Although repeating this lab with port 8022 may look similar to using port 8122, there is a little prob-
lem when you try to add port 8022 to the ssh_port_t label:

semanage port -a -t ssh port t -p tcp 8022
ValueError: Port tcp/8022 already defined

This error occurs because port 8022 is already in use by another service:

semanage port -1 | grep 8022
oa_system port t tcp 8022
oa_system port t udp 8022

There is not an easy way to add port 8022 to the ssh_port_t type without recompiling the policy.
When this lab is complete, restore the original port numbers on the SSH client and server.

578 Chapter 11 System Services and SELinux

Lab 6

Confirmation of success in this lab is straightforward. Run the Is -Zd commands on the noted
directories. The SELinux contexts for the /virtual/web and /var/www directories should match with the
following contexts:

system u:object r:httpd sys content t:s0
The contexts for the /virtual/web/cgi-bin and /var/www/cgi-bin directories should also match:
system u:object_r:httpd sys script exec_t:s0

It should go without saying that any changes you make should survive a SELinux relabel. Otherwise,
how do you expect to get credit for your work? If you've run the semanage fcontext -a command
on the correct directories, youll see these contexts listed in the file_contexts.local file, in the
/etc/selinux/targeted/contexts/files directory:

/virtual/web (/.*)? system u:object r:httpd sys content t:s0
/virtual/web/cgi-bin(/.*)? system u:object r:httpd sys script exec_t:sO

