
Chapter 7
Package Management

7.01	 The Red Hat Package Manager

7.02	 More RPM Commands

7.03	 Dependencies and the yum Command

7.04	 More Package Management Tools

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

After installation is complete, systems are secured, filesystems are configured, and other
initial setup tasks are completed, you still have work to do. Almost certainly before your
system is in the state you desire, you will be required to install or remove packages. To

make sure the right updates are installed, you need to know how to get a system working with
Red Hat Subscription Management (RHSM) or the repository associated with a rebuild distribution.

To accomplish these tasks, you need to understand how to use the rpm and yum
commands in detail. Although these are “just” two commands, they are rich in detail. Entire
books have been dedicated to the rpm command, such as the Red Hat RPM Guide by Eric

344  Chapter 7  Package Management

INSIDE THE EXAM

Administrative Skills
As the management of RPM packages is a
fundamental skill for Red Hat administrators,
it’s reasonable to expect to use the rpm, yum,
and related commands on the RHCSA exam.
In fact, the RHCE exam effectively assumes
knowledge of such commands and more as
prerequisite skills. The RHCSA objectives
include two specific requirements addressed in
this chapter:

■■ Install and update software packages
from Red Hat Network, a remote
repository, or from the local filesystem

■■ Update the kernel package
appropriately to ensure a bootable
system

Another closely related objective is the tar
archiving utility, which is covered in Chapter 9.
Before Red Hat introduced RPM packages, tar
archives were the standard method for distrib-
uting software.

Now let’s break down these skills a bit. If
you don’t have access to the RHN, don’t be
intimidated. For RHEL 7, the RHN-hosted
service has been phased out in favor of Red
Hat Subscription Management (RHSM, which
can be accessed via a web interface from the
Red Hat Customer Portal). You can use yum to
install and update packages from RHSM; you
can use the same yum commands to install
and update packages from a remote third‑party
repository.

Foster-Johnson. For many, that degree of in-depth knowledge of the rpm command is no
longer necessary, given the capabilities of the yum command and the additional package
management tools provided in RHEL 7.

CERTIFICATION OBJECTIVE 7.01

The Red Hat Package Manager
One of the major duties of a system administrator is software management. New
applications are installed. Services are updated. Kernels are patched. Without the right
tools, it can be difficult to figure out what software is on a system, what is the latest update,
and what applications depend on other software. Worse, you may install a new software
package only to find it has overwritten a crucial file from a currently installed package.

The Red Hat Package Manager  345

The Red Hat Package Manager (RPM) was designed to alleviate these problems. With
RPM, software is managed in discrete packages. An RPM package includes the software with
instructions for adding, removing, and upgrading those files. When properly used, the RPM
system can back up key configuration files before proceeding with upgrades and removals.
It can also help you identify the currently installed version of any RPM-based application.

RPMs and the rpm command are very focused on individual packages, which in many
cases is far from ideal and is why rpm has been supplemented with the yum command.
With a connection to a repository such as that available from RHSM or third-party
“rebuilds” such as Scientific Linux, you’ll be able to use yum to satisfy dependencies
automatically.

What Is a Package?
In the generic sense, an RPM package is a container of files. It includes the group of files
associated with a specific program or application, which normally contains binary files,
installation scripts, as well as configuration and documentation files. It also includes
instructions on how and where these files should be installed and uninstalled.

An RPM package name usually consists of the version, the release, and the architecture
for which it was built. For example, the fictional penguin-3.4.5-26.el7.x86_64.rpm package
is version 3.4.5, release 26.el7. The x86_64 indicates that it is suitable for computers built to
the AMD/Intel 64-bit architecture.

Many RPM packages include software compiled for a specific CPU type
(for example, x86_64). You can identify the CPU type for the system with the
uname -i or uname -p command. More information about your processor can
be found in /proc/cpuinfo.

What Is the RPM Database?
At the heart of this system is the RPM database, which is stored locally on each machine
in the /var/lib/rpm directory. Among other things, this database tracks the version and
location of every file in each RPM. The RPM database also maintains an MD5 checksum
of each file. With the checksum, you can use the rpm -V package command to determine
whether any file from that RPM package has changed. The RPM database makes it easy to
add, remove, and upgrade individual packages because it’s configured to know which files to
handle and where to put them.

RPM also manages conflicts between packages. For example, assume you have a package
that installs a configuration file, and you want to update from an older to a newer version
of the software. Call the original configuration file /etc/someconfig.conf. You’ve already
installed package X. If you then try to install a more recent version of package X, the RPM

346  Chapter 7  Package Management

can be configured to preserve the original configuration file and install the new one as
/etc/someconfig.conf.rpmnew.

Alternatively, the RPM creator can build the RPM in such a way that it will back up the
original /etc/someconfig.conf file (with a filename such as /etc/someconfig.conf.rpmsave)
before upgrading package X and then replace the configuration file with a new version.
This may occur if the format of the old configuration file is incompatible with the new
release of the software.

Although RPM upgrades are supposed to preserve or save existing configuration
files, there are no guarantees, especially if the RPM is created by someone
other than Red Hat. It’s best to back up all applicable configuration files before
upgrading any associated RPM package.

What Is a Repository?
RPM packages are frequently organized into repositories. Generally, such repositories
include groups of packages with different functions. For example, the Red Hat Portal gives
access to the following RHEL 7 Server repositories (additional repositories are available):

■■ Red Hat Enterprise Linux Server  The main repository, which includes both the
packages associated with the original installation of RHEL 7, along with updates.

■■ RHEL Server Optional  A large group of open-source packages, provided with no
support from Red Hat.

■■ RHEL Server Supplementary  A collection of packages released under licenses
other than open source, such as the IBM Java Runtime and Development Kit.

■■ RHEL Extras  Includes Docker, a platform for packaging and managing applications
using a lightweight form of virtualization known as Linux Containers.

■■ RHN Tools  Client tools to subscribe to the Red Hat Network via a Satellite server,
along with utilities for automating Kickstart installations.

In contrast, the repository categories for third-party Red Hat clones vary. Generally, they
include categories such as main and extras. In most cases, whereas the main repository
includes just the packages available from the released DVD, updated packages are configured
in their own repository.

Each repository includes a database of packages in a repodata/ subdirectory. That
database includes information on each package and allows installation requests to include
all dependencies. If you have a subscription to RHSM, access to the Red Hat repositories
is enabled in the product-id.conf and subscription-manager.conf files, in the /etc/yum/
pluginconf.d directory. Those files are discussed later in this chapter.

Later in this chapter, you’ll examine how to configure connections to repositories with
the configuration files associated with the yum command.

The Red Hat Package Manager  347

A dependency is a package that needs to be installed to make sure all the
features of a target package work as designed.

Install an RPM Package
There are three basic commands that may install an RPM. They won’t work if there are
dependencies. For example, if you haven’t installed the SELinux policy development
tool package (policycoreutilis-devel) and try to install the SELinux configuration GUI
(policycoreutilis-gui), you’ll get the following message (version numbers may vary):

rpm -i policycoreutils-gui-2.2.5-11.el7.x86_64.rpm
error: Failed dependencies:
 policycoreutils-devel = 2.2.5-11.el7 is needed by
policycoreutils-gui-2.2.5-11.el7.x86_64

One way to test this is to mount the RHEL 7 DVD with the mount /dev/cdrom /media
command. Next, find the noted policycoreutils-gui package in the Packages/ subdirectory.
Alternatively, you could download that package directly from the Red Hat Portal or a
configured repository with the yumdownloader policycoreutils-gui command. This
and other yum commands are discussed later in this chapter. Be aware that some Linux
GUI desktop environments automatically mount a CD/DVD media that is inserted into an
associated drive. If so, you’ll see the mount directory in the output to the mount command.

When dependency messages are shown, rpm does not install the given package. Note the
dependency messages: policycoreutils-gui requires a policycoreutils-devel package of the
same version number.

Sure, you can use the --nodeps option to make rpm ignore dependencies, but
that can lead to other problems, unless you install those dependencies as soon as
possible. The best option is to use an appropriate yum command, described later
in this chapter. In this case, a yum install policycoreutils-gui command would
automatically install the other dependent RPM as well.

If you’re not stopped by dependencies, the following three basic commands can install
RPM packages:

rpm -i packagename
rpm -U packagename
rpm -F packagename

The rpm -i option installs the package, if it isn’t already installed. The rpm -U option
upgrades any existing package or installs it if an earlier version isn’t already installed.

348  Chapter 7  Package Management

The rpm -F option upgrades only existing packages. It does not install a package if it wasn’t
previously installed.

We like to add the -vh options with the rpm command. These options add verbose mode
and use hash marks that can help monitor the progress of the installation. So when we use
rpm to install a package, we run the following command:

rpm -ivh packagename-version.arch.rpm

There’s one more thing associated with a properly designed RPM package. When
unpacking a package, the rpm command checks to see whether it would overwrite any
configuration files. The rpm command tries to make intelligent decisions about what to do
in this situation. As suggested earlier, if the rpm command chooses to replace an existing
configuration file, it provides a warning (in most cases) similar to this:

rpm -U penguin-3.26.x86_64.rpm
warning: /etc/someconfig.conf saved as /etc/someconfig.conf.rpmsave

The rpm command normally works in the same fashion when a package is erased with
the -e switch. If a configuration file has been changed, it’s also saved with an .rpmsave
extension in the same directory.

It’s up to you to look at both files and determine what modifications, if any, need to be
made. Of course, as not every RPM package is perfect, there’s always a risk that such an
update would overwrite that critical customized configuration file. In that case, backups
are important.

In general, the rpm commands to upgrade a package work only if the package being
installed is of a newer version. Sometimes, an older version of a package is desirable. As
long as there are no security issues with the older package, administrators may be more
comfortable with slightly older releases. Bugs that may be a problem on a newer package
may not exist in an older version of that package. So if you want to “downgrade” a package
with the rpm -i, -U, or -F command, the --force switch can help.

If you’ve already customized a package and then upgraded it with rpm, check if
there is a saved configuration file ending with an .rpmnew extension. Use it as a
guide to change the settings in the new configuration file. But remember, with
upgrades, there may be additional required changes. Therefore, you should test
the result for every conceivable production environment.

Uninstall an RPM Package
The rpm -e command uninstalls a package. But first, RPM checks a few things. It performs
a dependency check to make sure no other packages need what you’re trying to uninstall.
If dependent packages are found, rpm -e fails with an error message identifying these
packages. With properly configured RPMs, if you have modified related configuration files,

The Red Hat Package Manager  349

RPM makes a copy of the file, adds an .rpmsave extension to the end of the filename, and
then erases the original. It can then proceed with the uninstallation. When the process is
complete, it removes the package from the database.

Be very careful about which packages you remove from a system. Like many
other Linux utilities, RPM may silently let you shoot yourself in the foot. For
example, if you were to remove the packages that include the running kernel,
it could render that system unusable at the next boot.

Install RPMs from Remote Systems
With the RPM system, you can even specify package locations similar to an Internet address,
in URL format. For example, if you want to apply the rpm command to the foo.rpm package
on the /pub directory of the ftp.rpmdownloads.com FTP server, you can install this package
with a command such as the following:

rpm -ivh ftp://ftp.rpmdownloads.com/pub/foo.rpm

Assuming you have a network connection to that remote server, this particular rpm command
logs on to the FTP server anonymously and downloads the file. Unfortunately, an attempt to
use wildcards in the package name with this command leads to an error message associated
with “file not found.” The complete package name is required, which can be an annoyance.

If you installed RHEL 7 from an FTP server as instructed in Chapters 1 and 2, you could
substitute the associated URL, along with the exact name of the package. For example, based
on the FTP server configured in Chapter 1 and the aforementioned policycoreutils-gui
package, the appropriate command would be

rpm -ivh ftp://192.168.122.1/pub/inst/policycoreutils-gui 
-2.2.5-11.el7.x86_64.rpm

If the FTP server requires a username and password, you can include them in the following
format

ftp://username:password@hostname:port/path/to/remote/package.rpm

where username and password are the username and password you need to log on to this
system, and port, if required, specifies a nonstandard port used on the remote FTP server.

Based on the preceding example, if the username is mjang and the password is
Ila451MS, you could install an RPM directly from a server with the following command:

rpm -ivh ftp://mjang:Ila451MS@192.168.122.1/pub/inst/policycoreutils-gui 
-2.2.5-11.el7.x86_64.rpm

350  Chapter 7  Package Management

RPM Installation Security
Security can be a concern, especially with RPM packages downloaded over the Internet.
If a “black hat” hacker were to somehow penetrate a third-party repository, how would
you know that packages from those sources were genuine? The key is GNU Privacy Guard
(GPG), which is the open-source implementation of Pretty Good Privacy (PGP). If an RPM
file is signed using a private GPG key, the integrity of the package can be verified with the
corresponding public GPG key. A valid signature also ensures that the package has been
signed by an authorized party and does not come from a malicious hacker.

If you haven’t imported or installed the Red Hat public GPG keys, you might have
noticed something similar to the following message when packages are installed:

warning: vsftpd-3.0.2-9.el7.x86_64.rpm: Header V3 RSA/SHA256
Signature, key ID fd431d51: NOKEY

If you’re concerned about security, this warning should raise alarm bells. During the RHEL 7
installation process, GPG keys are stored in the /etc/pki/rpm-gpg directory. Take a look at the
contents of this directory. You’ll find files such as RPM-GPG-KEY-redhat-release. To actually
use the key to verify packages, it has to be imported—and the command to import the GPG
key is fairly simple:

rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

If there’s no output, the rpm command probably successfully imported the GPG key. Even if
this command succeeds, if you repeat it, an “import failed” message will appear. In addition,
the GPG key is now included in the RPM database, which can be verified with the rpm -qa
gpg-pubkey command.

In the /etc/pki/rpm-gpg directory, there are normally five GPG keys available, as
described in Table 7-1.

Later in this chapter, you’ll see how GPG keys are imported automatically from remote
repositories when new packages are installed.

Special RPM Procedures with the Kernel
Updated kernels incorporate new features, address security issues, and generally help Linux
systems work better. However, kernel updates can go wrong and prevent systems booting or
cause applications to break; this is particularly common if specialized packages that depend
on an existing version of a kernel have been installed.

If you are aware of any software that relies on a custom kernel module, don’t upgrade
a kernel if you’re not ready to repeat every step taken to customize software with the
existing kernel, whether that be obtaining new closed-source kernel modules from the
vendor for the new version, rebuilding specialized modules for the new kernel, or other
manual work. For example, the drivers for a few wireless network cards and printers

The Red Hat Package Manager  351

without in-tree open-source drivers may be tied to a specific version of a kernel. Some
virtual machine software components (not including KVM) may be installed against a
specific version of a kernel.

If you see an available update for a kernel RPM, the temptation is to run the rpm -U
newkernel command. Don’t do it! It overwrites your existing kernel, and if the updated
kernel doesn’t work with the system, you’re out of luck. (Well, not completely out of luck,
but if you reboot and have problems, you’ll have to use rescue mode, discussed in Chapter 5,
to boot the system and reinstall the existing kernel. In the days where there were separate
Troubleshooting and System Maintenance sections on the Red Hat exams, that might have
made for an interesting test scenario.) The best option for upgrading to a new kernel is to
install it, specifically with a command such as this:

rpm -ivh newkernel

If you’re connected to an appropriate repository, the following command works equally well:

yum install kernel

This installs the new kernel, along with related files, side by side with the current working
kernel. One example of the result is shown in Figure 7-1, in the output to the ls /boot
command.

It is also safe to install a new kernel by running yum update kernel. In fact, by
default, yum is configured to always install a kernel package and leave any
old kernel in place. This applies to a maximum of three kernels installed at the
same time.

Table 7-2 briefly describes the different files for the various parts of the boot process in
the /boot directory.

GPG Key Description

RPM-GPG-KEY-redhat-beta Packages built for the RHEL 7 beta
RPM-GPG-KEY-redhat-legacy-former Packages for pre–January 2007 releases

(and updates)
RPM-GPG-KEY-redhat-legacy-release Packages for post–January 2007 releases
RPM-GPG-KEY-redhat-legacy-rhx Packages associated with Red Hat Exchange
RPM-GPG-KEY-redhat-release Released packages for RHEL 7

TABLE 7-1	   GPG Keys to Verify Software Updates

352  Chapter 7  Package Management

The installation of a new kernel adds options to boot the new kernel in the GRUB
configuration file (/boot/grub2/grub.cfg), without erasing existing options. A condensed
version of the revised GRUB configuration file is shown in Figure 7-2.

A careful reading of the two “menuentry” stanzas reveals that the only difference is in
the version numbers listed in the title for the Linux kernel and for the initial RAM disk
filesystem. By default, the system will boot with the newly installed kernel. Therefore, if that
kernel does not work, you can restart the system, access the GRUB menu, and then boot
from the older, previously working kernel.

File Description

config-* Kernel configuration settings; a text file
grub2/ Directory with GRUB configuration files
initramfs-* The initial RAM disk filesystem, a root filesystem

called during the boot process to help load other kernel
components, such as block device modules

initrd-plymouth.img RAM disk filesystem containing files for the graphical
animation displayed at boot by Plymouth

symvers-* List of modules
System.map-* Map of system names for variables and functions, with

their locations in memory
vmlinuz-* The actual Linux kernel

	 TABLE 7-2	

Files in the /boot
Directory

	 FIGURE 7-1	  

New and existing
kernel files in the
/boot directory

More RPM Commands  353

CERTIFICATION OBJECTIVE 7.02

More RPM Commands
The rpm command is rich with details. All this book can do is cover some of the basic
ways rpm can help you manage RHEL. You’ve already read about how rpm can install and
upgrade packages in various ways. Queries can help you identify what’s installed in detail.
Verification tools can help you check the integrity of packages and individual files. You can
use related tools to help identify the purpose of different RPMs, as well as a full list of those
RPMs already installed.

Package Queries
The simplest RPM query verifies whether a specific package is installed. The following
command verifies the installation of the systemd package (the version number may vary):

rpm -q systemd
systemd-208-11.el7.x86_64

You can do more with RPM queries, as described in Table 7-3. Note how queries are
associated with -q or --query; full-word switches such as --query are usually associated
with a double-dash.

	 FIGURE 7-2	   GRUB with a second kernel

354  Chapter 7  Package Management

If you want to query an RPM package file rather than the local RPM database, all
you have to do is add the -p switch and specify the path or URL of the package file.
As an example, the following command lists all the files of the RPM package
epel-release-7-5.noarch.rpm:

rpm -qlp epel-release-7-5.noarch.rpm

Package Signatures
RPM uses several methods for checking the integrity of a package. You’ve seen how to
import the GPG key. Some of the available methods are shown when you verify a package
with the rpm --checksig pkg.rpm command. (The -K switch is equivalent to --checksig.)
For example, if you’ve downloaded a package from a third party such as the hypothetical
pkg-1.2.3-4.noarch.rpm package and want to check it against the imported GPG keys, run
the following command:

rpm --checksig pkg-1.2.3-4.noarch.rpm

If successful, you’ll see output similar to the following:

pkg-1.2.3-4.noarch.rpm: rsa sha1 (md5) pgp md5 OK

rpm Query Command Meaning

rpm -qa Lists all installed packages.
rpm -qf /path/to/file Identifies the package associated with

/path/to/file.
rpm -qc packagename Lists only configuration files from

packagename.
rpm -qd packagename Lists only documentation files from

packagename.
rpm -qi packagename Displays basic information for

packagename.
rpm -ql packagename Lists all files from packagename.
rpm -qR packagename Notes all dependencies; you can’t install

packagename without them.
rpm -q --changelog packagename Displays change information for

packagename.

	 TABLE 7-3	

rpm --query
Options

More RPM Commands  355

This guarantees that the package is authentic and the RPM file was not modified by a third
party. You may already recognize the algorithms used to verify package integrity:

■■ rsa  Named for its creators, Rivest, Shamir, and Adleman, it’s a public key
encryption algorithm.

■■ sha1  A 160-bit message digest Secure Hash Algorithm; a cryptographic
hash function.

■■ md5  Message Digest 5, a cryptographic hash function.
■■ pgp  PGP, as implemented in Linux by GPG.

File Verification
The verification of an installed package compares information about that package with
information from the RPM database on a system. The --verify (or -v) switch checks the
size, MD5 checksum, permissions, type, owner, and group of each file in the package.
Verification can be done in a number of ways. Here are a few examples:

■■ Verify all files. Naturally, this may take a long time on your system. (Of course, the
rpm -Va command performs the same function.)

rpm --verify –a

■■ Verify all files within a package against a downloaded RPM.

rpm --verify -p vsftpd-3.0.2-9.el7.x86_64.rpm

■■ Verify a file associated with a particular package.

rpm --verify --file /bin/ls

If the integrity of the files or packages is verified, you will see no output. Any output
means that a file or package is different from the original. There’s no need to panic if certain
changes appear; after all, administrators do edit configuration files. There are eight tests. If
there has been a change, the output is a string of up to eight failure code characters, each of
which tells you what happened during each test.

If you see a dot (.), that test passed. The following example shows /bin/vi with an incorrect
group ID assignment:

rpm --verify --file /bin/vi
......G. /bin/vi

Table 7-4 lists the failure codes and their meanings.
Now here’s an interesting experiment: When you have one version of a package installed,

use the rpm --verify -p command with a second version of the same package. Finding such

356  Chapter 7  Package Management

a package should not be too difficult because Red Hat updates packages for feature updates,
security patches, and, yes, bug fixes frequently. For example, when we wrote this book for
RHEL 7, we had access to both sssd-client-1.11.2-65.el7.x86_64.rpm and sssd-client-1.11.2-28
.el7.x86_64.rpm. When the latter version was installed, we ran the command

rpm --verify -p sssd-client-1.11.2-65.el7.x86_64.rpm

and got a whole list of changed files, as shown in Figure 7-3. This command provides
information on what was changed between different versions of the sssd-client package.

Failure Code Meaning

5 MD5 checksum
S File size
L Symbolic link
T File modification time
D Device
U User
G Group
M Mode

	 TABLE 7-4	

rpm --verify Codes

	 FIGURE 7-3	  

Verifying changes
between packages

Dependencies and the yum Command  357

CERTIFICATION OBJECTIVE 7.03

Dependencies and the yum Command
The yum command makes it easy to add and remove software packages to and from a
system. It maintains a database regarding the proper way to add, upgrade, and remove
packages. This makes it relatively simple to add and remove software with a single
command. That single command overcame what was known as “dependency hell.”

The yum command was originally developed for Yellow Dog Linux. The name is based
on the Yellow Dog updater, modified. Given the trouble associated with dependency hell,
Linux users were motivated to find a solution. It was adapted for Red Hat distributions with
the help of developers from Duke University.

The configuration of yum depends on package libraries known as repositories. Red
Hat repositories are available through the Red Hat Portal, while repositories of third-party
rebuild distributions use their own publicly available servers. In either case, it’s important
to know the workings of the yum command as well as how it installs and updates individual
packages and package groups.

An Example of Dependency Hell
To understand more about the need for the yum command, examine Figure 7-4. You do not
need the kernel.spec file. The packages listed in that figure are what’s required to build an
RPM. Although the building of an RPM package is not an exam requirement, the associated
packages illustrate the need for yum.

You could try to use the rpm command to install each of these packages. To do so, take
the following steps:

1.	 Include the RHEL 7 DVD. Insert it into its drive, or make sure it’s included in the
configuration for the target virtual machine.

	 FIGURE 7-4	  

Packages required
to build RPMs

358  Chapter 7  Package Management

2.	 Unless it’s already mounted, mount that DVD with the following command. Of course,
a different empty directory can be substituted for /media.

mount /dev/cdrom /media

3.	 Navigate to the directory where the DVD is mounted (that is, /media or some
subdirectory of /media).

4.	 The RPM packages on the RHEL 7 DVD can be found in the Packages/ subdirectory
of the DVD. Navigate to that subdirectory.

5.	 Enter the rpm -ivh command, and then type in the names of the packages listed
in Figure 7-4. It may be easiest to use command completion for this purpose; for
example, if you were to type in

rpm -ivh gcc-

you could then press the tab key twice and review available packages that start with
gcc-. You could then enter additional keys and press the tab key again to complete
the name of the package. After a bit of work, you’d end up with something similar to
the command and results shown in Figure 7-5. What actually appears depends on the
current revision level of each package, as well as what’s already installed on the local
system.

6.	 The next step is to try to include the missing dependencies in the list of packages
to be installed. When we try this step, it leads to more dependencies, as shown in
Figure 7-6.

At this point, the addition of more packages to the installation becomes somewhat more
difficult. How would you know, except from experience, that the mpfr-* package would

	 FIGURE 7-5	   These packages have dependencies.

Dependencies and the yum Command  359

satisfy the “Failed Dependencies” message for libmpfr.so.4()(64bit)? Even if you do already
understand, the inclusion of such packages is not enough. There’s even one more level of
dependent packages. This pain is known as dependency hell.

Relief from Dependency Hell
Before yum, some attempts to use the rpm command were stopped by the dependencies
described earlier. Sure, you could install those dependent packages with the same command,
but what if those dependencies themselves have dependencies? That perhaps is the biggest
advantage of the yum command.

Before yum, RHEL incorporated dependency resolution into the update process.
Through RHEL 4, this was done with up2date. Red Hat incorporated yum starting with
RHEL 5. The yum command uses subscribed Red Hat Portal channels and any other
repositories configured in the /etc/yum.repos.d directory.

All you need to do to install the packages listed in Figure 7-4 is run the following command:

yum install gcc xmlto hmaccalc elfutils-devel binutils-devel \
> python-devel perl-ExtUtils-Embed bison audit-libs-devel numactl-devel

If so prompted, accept the request to install additional dependent packages, and then all of
the noted dependencies are installed automatically. (Yes, the -y switch would perform the
same function.) If updates are available from connected repositories, the latest available

	 FIGURE 7-6	   There are even more dependencies.

360  Chapter 7  Package Management

version of each package is installed. The yum command is described in more detail later in
this chapter.

But if you’re running RHEL 7 without a connection to Red Hat Portal, nothing happens.
Shortly, you’ll see how to create a connection between yum and the installation server
created in Chapter 1.

A number of third-party repositories are available for RHEL. They include several
popular applications that are not supported by Red Hat. For example, one of the authors of
this book uses an external repository to install packages associated with his laptop wireless
network card.

Although the owners of these repositories work closely with some Red Hat developers,
there are some reports where dependencies required from one repository are unavailable
from other repositories, leading to a different form of “dependency hell.” However, the more
popular third-party repositories are excellent; we have never encountered “dependency hell”
when using these repositories.

There are two main reasons why Red Hat does not include most proven and
popular packages available from third-party repositories. Some are not released
under open-source licenses, and others are packages that Red Hat simply
chooses not to support.

Basic yum Configuration
Relief from dependency hell depends on the proper configuration of yum. Not only do you
need to know how to configure yum to connect to repositories over the Internet, but also
you need to know how to configure yum to connect to repositories on a local network. With
this knowledge, you can connect yum to repositories on Red Hat Portal, to repositories
configured by third parties, and to custom repositories configured for specialized networks.
And remember, during the Red Hat exams, you won’t have access to the Internet.

To that end, you have to understand how yum is configured in some detail. It starts with
the /etc/yum.conf configuration file and continues with files in the /etc/yum and /etc/yum
.repos.d directories. To get the full list of yum configuration directives and their current
values, run the following command:

yum-config-manager

This command requires the installation of the yum-utils package.

Dependencies and the yum Command  361

The Basic yum Configuration File: yum.conf
This section analyzes the default version of the /etc/yum.conf file, line by line. Although you
won’t make changes to this file in most cases, you need to understand at least the standard
directives in this file if something goes wrong. The following lines are straight excerpts from
the default version of this file. The first directive is a header; the [main] header suggests that
all directives that follow apply globally to yum:

[main]

The cachedir directive specifies where caches of packages, package lists, and related
databases are to be downloaded. Based on the standard 64-bit architecture for RHEL 7,
this translates to the /var/cache/yum/x86_64/7Server directory.

cachedir=/var/cache/yum/$basearch/$releasever

The keepcache boolean directive specifies whether yum actually stores downloaded
headers and packages in the directory specified by cachedir. The standard shown here
suggests that caches are not kept, which helps make sure that a system is kept up to date
with the latest available packages (at the expense of slightly slower executions of yum as
metadata is pulled down on each execution).

keepcache=0

The debuglevel directive is closely related to the errorlevel and logfile directives,
as they specify the detail associated with debug and error messages. Even though the
errorlevel directive is not shown, both it and debuglevel are set to 2 by default. The
available range is 0–10, where 0 provides almost no information, and 10 provides perhaps
too much information, even for developers.

debuglevel=2
logfile=/var/log/yum.log

The exactarch boolean directive makes sure the architecture matches the actual processor
type, as defined by the arch command.

exactarch=1

The obsoletes boolean directive can support the uninstallation of obsolete packages in
conjunction with a yum update command.

obsoletes=1

The gpgcheck boolean directive makes sure the yum command actually checks the GPG
signature of downloaded packages.

gpgcheck=1

362  Chapter 7  Package Management

The plugins boolean directive provides a necessary link to Python-based RHN plugins in
the /usr/share/yum-plugins directory. It also refers indirectly to plugin configuration files in
the /etc/yum/pluginconf.d directory.

plugins=1

The installonly_limit directive specifies how many of the packages listed in the
installonlypkgs option (usually the kernel) can be installed at the same time:

installonly_limit=3

To make sure the header data downloaded from the RHN (and any other repositories)
is up to date, the metadata_expire directive specifies a lifetime for headers. Although the
comments in yum.conf state that the default value is 90 minutes, the actual default on RHEL
7 is six hours. In other words, if you haven’t used the yum command in the last six hours,
the next use of the yum command downloads the latest header information.

#metadata_expire=90m

The final directive of interest, in comments, happens to be the default; it’s a reference to
the noted directory for actual configuration information for repositories:

PUT YOUR REPOS HERE OR IN separate files named file.repo
in /etc/yum.repos.d

Configuration Files in the /etc/yum/pluginconf.d Directory
The default files in the /etc/yum/pluginconf.d directory configure a connection between
yum and the Red Hat Portal or a local Satellite server. If you’re studying from a RHEL
rebuild distribution such as CentOS, you’ll see a different set of files in this directory. In
CentOS, the files in this directory are focused on connecting the local system to better
repositories over the Internet. This is a Red Hat book, however, so the focus will be on the
two basic files in the RHEL 7 installation.

Red Hat Network Plugins
If you have a subscription to the RHN via an old version of Red Hat Satellite Server, the
rhnplugin.conf file in this directory is especially important. Although the directives, shown
next, may seem simple, they enable access and check GPG signatures:

[main]
enabled = 1
gpgcheck = 1
timeout = 120

Dependencies and the yum Command  363

In comments, this file suggests that different settings can be configured for different
repositories. The repositories enclosed in brackets should match those associated with the
actual RHN repositories.

Red Hat Subscription Management Plugins
The subscription-manager.conf and product-id.conf files are designed to connect the yum
system to Red Hat Portal using Subscription Manager. As discussed later in this chapter,
Subscription Manager is a system designed to replace RHN for system updates. The file
subscription-manager.conf is very simple, with two directives that enable a connection
between yum and the Subscription Manager plugin:

[main]
enabled=1

Configuration Files in the /etc/yum.repos.d Directory
The configuration files in the /etc/yum.repos.d directory are designed to connect systems to
actual repositories. If you’re running a rebuild distribution such as CentOS, you’ll see files
that connect to public repositories on the Internet. If you’re running RHEL 7, this directory
may be empty, unless the system was registered with Red Hat Subscription Management.
In that case, you’ll see a redhat.repo file in that directory, which is designed to get further
updates from the Red Hat Portal.

A couple of elements in common for configuration files in the /etc/yum.repos.d
directory are the file extension (.repo) and the documentation, available with the man
yum.conf command.

A properly configured .repo file in the /etc/yum.repos.d directory can be a terrific
convenience to enable the installation of groups of packages with the yum command. As
the /etc/yum.repos.d directory may be empty on a RHEL 7 system, you should know how to
create that file from scratch, using data for the installation server and information available
in the yum.conf man page.

Understand /etc/yum.repos.d Configuration Files
for Rebuild Distributions
If you’re running a rebuild distribution, the files in the /etc/yum.repos.d directory may
connect the local system to one or more remote repositories. One example comes from
CentOS 7, as shown in Figure 7-7. Although it includes a number of different repositories,
you can learn from the pattern of directives configured for each repository.

364  Chapter 7  Package Management

There are four stanzas in Figure 7-7. Each stanza represents a connection to a CentOS
repository. For example, the first stanza includes the basic elements of a repository and
more. The first line, in brackets, provides a name for the repository. In this case, [base] just
stands for the base repository used by the CentOS 7 distribution. It doesn’t represent the
directory where the associated packages are installed.

[base]

However, when you run the yum update command to update the local database of
those remote packages, it includes base as the name of the repository in output similar to
the following, which suggests that it took one second to download the 3.6KB database of
existing repository data:

base | 3.6 kB 00:00:01

Although the name of the repository follows, it’s just for documentation purposes and
does not affect how packages or package databases are read or downloaded. However, the
inclusion of the name directive does avoid a nonfatal error message.

name=CentOS-$releasever - Base

	 FIGURE 7-7	   Several repositories configured in one file

Dependencies and the yum Command  365

Note the mirrorlist directive that follows. It specifies a URL to a file that contains a list of
multiple URLs to the closest remote servers with a copy of the actual repository of packages.
It commonly works with either the HTTP or FTP protocol. (It can even work with local
directories or mounted Network File System shares, as described in Exercise 7-1.)

mirrorlist=http://mirrorlist.centos.org/?release=$releasever 
&arch=$basearch&repo=os

Alternatively, these repositories can be set up in a file downloaded with the baseurl directive:

#baseurl=http://mirror.centos.org/centos/$releasever/os/$basearch/

Repositories configured in .repo files in the /etc/yum.repos.d directory are enabled by
default. The following directive provides an easy way to deactivate a connection to such
(enabled=1 would activate the connection):

enabled=0

If you want to disable the GPG signatures of each package to be downloaded, the following
command puts that wish into effect:

gpgcheck=0

Of course, if you enable gpgcheck, any GPG check requires a GPG key; the following
directive specifies one key from the local /etc/pki/rpm-gpg directory for that purpose:

gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7

Create Your Own /etc/yum.repos.d Configuration File
You’ll want to know how to create a local configuration file in the /etc/yum.repos.d directory.
It enables the use of the yum command, which is the easiest way to install groups of packages
such as the Apache web server or any of the groups of packages discussed in the book.

To do so, you’ll need to set up a text file with a .repo extension in the /etc/yum.repos.d
directory. All that file needs is three lines. In fact, if you’re willing to accept some nonfatal
errors, two lines are sufficient.

On RHEL 7, especially during an exam, the /etc/yum.repos.d directory may be empty.
So you may not have access to examples such as those available for CentOS, as shown in
Figure 7-7. The first guidance comes from the following comments at the bottom of the
/etc/yum.conf file, which confirm that the file must have a .repo extension in the
/etc/yum.repos.d directory:

PUT YOUR REPOS HERE OR IN separate files named file.repo
in /etc/yum.repos.d

366  Chapter 7  Package Management

In addition, you could configure the three lines in the /etc/yum.conf file. If you forget
what three lines to add, there is an example in the man page for the yum.conf file, as shown
in Figure 7-8.

If you forget what to do, run the man yum.conf command and scroll down to this part of
the man page. The identifier for the repository is shown in brackets. Unless specified by the
RHCSA exam, it doesn’t matter what single word you put between the brackets as the identifier.

For the purpose of this chapter, we open a new file named whatever.repo in the /etc/yum
.repos.d directory. (To some extent, the filename of the .repo file does not matter, as long as
it has a .repo extension in the /etc/yum.repos.d directory.) In that file, we add the following
identifier:

[test]

Next comes the name directive for the
repository. As suggested by the listing in the man
page, that name should be “human readable.” In
Linux parlance, that also means the name does
not affect the functionality of the repository.
To demonstrate, we add the following directive:

name=somebody likes Linux

You should learn how to
create a working .repo file in the /etc/yum
.repos.d directory during Red Hat exams. It
can be a big time saver when you need to
install additional packages.

	 FIGURE 7-8	  

Excerpt from
man yum.conf to
configure a new
repository

Dependencies and the yum Command  367

Finally, there’s the baseurl directive, which can be configured to point to an installation
server. The RHCSA requirements imply that you need to know how to install Linux from a
remote server. They also suggest that you need to know how to install and update packages
from a remote repository. To meet either objective, you need to know the URL of that
remote server or repository. It’s reasonable to expect that URL to be provided during the
exam. In Chapter 1, you created FTP and HTTP installation servers on the host system for
virtual machines, which are “remote” from those systems.

The FTP and HTTP installation servers that you created in Chapter 1 can also be used as
remote repositories. To set up access to those repositories, all you need to include is one of
the following baseurl directives:

baseurl=ftp://192.168.122.1/pub/inst
baseurl=http://192.168.122.1/inst

As suggested in the yum.conf man page, you should not include both URLs in separate
baseurl directives. Make a choice and save the resulting file. That’s all you need. There’s no
reason (except for better security) to include the enabled, gpgcheck, or gpgkey directive
described earlier. Of course, security is important in real life, but if your focus is on the
exam, the best advice is often to keep things as simple as possible.

Once the file is saved, run the following commands to first clear out databases from
previously accessed repositories and then to update the local database cache from the
repository newly configured in the /etc/yum.repos.d/whatever.repo file:

yum clean all
yum makecache

For a system not registered with Red Hat Subscription Management, it’ll lead to the
following output:

Loaded plugins: langpacks, product-id, subscription-manager
test | 3.7 kB 00:00
test/primary_db | 2.9 MB 00:00
Metadata Cache Created

The system is now ready for the installation of new packages. Try running the following
command:

yum install system-config-date

Given the virtual machines configured earlier in this book, you might see the result
shown in Figure 7-9. If confirmed, the yum command would download and then install not
only the system-config-date RPM, but also the dependent package shown in the figure to
make sure the system-config-date package is fully supported.

368  Chapter 7  Package Management

EXERCISE 7-1

Create a yum Repository from the RHEL 7 DVD
This exercise requires access to the RHEL 7 DVD. If you don’t have a lot of space for this
exercise, it’s acceptable to set up the repository directly on the mounted DVD. Alternatively,
you can copy the contents to a specified directory. It also assumes an available installation
repository, such as one of those created in Chapter 1.

This exercise assumes you’ll be starting with no files in the /etc/yum.repos.d directory
described in this chapter.

1.	 If there are existing files in the /etc/yum.repos.d directory, copy them to a backup
location such as the root user’s home directory, /root. Delete any existing .repo files
in the /etc/yum.repos.d directory.

cp -a /etc/yum.repos.d /root/
rm –f /etc/yum.repos.d/*.repo

2.	 Mount the RHEL 7 DVD on the /mnt directory with the following command
(you may need to substitute /dev/sr0 or /dev/dvd for /dev/cdrom):

mount /dev/cdrom /mnt

	 Alternatively, if you have only the RHEL 7 DVD as an ISO file, mount it with the
following command:

mount -o loop rhel-server-7.0-x86_64-dvd.iso /mnt

	 FIGURE 7-9	   Installation of one package can include dependencies.

Dependencies and the yum Command  369

	 Of course, if desired, you can copy the files from a different mount point, such as
from /mnt to the /opt/repos/rhel7 directory, with a command like this:

mkdir -p /opt/repos/rhel7
cp -a /mnt/. /opt/repos/rhel7

	 The dot (.) in front of the /mnt directory ensures the copying of the contents of the
directory, rather than of the directory itself.

3.	 Navigate to the /etc/yum.repos.d directory.
4.	 Open a new file in a text editor. Use a name such as rhel7.repo.
5.	 Edit the rhel7.repo file. Create a new stanza of directives. Use an appropriate stanza

title such as [rhel].
6.	 Specify an appropriate name directive for the repository.
7.	 Include a baseurl directive set to file:///opt/repos/rhel7/. Include an enabled=1

directive.
8.	 Save and close the file.
9.	 Assuming you’re running RHEL 7 (and not a rebuild distribution), open the subscription-

manager.conf file in the /etc/yum/pluginconf.d directory and set enabled=0.
10.	 Run the yum clean all and yum update commands.
11.	 If successful, you should see the following output:

Loaded plugins: langpacks, product-id
rhel | 3.8 kB 00:00:00
(1/2): rhel/group_gz | 133 kB 00:00:00
(2/2): rhel/primary_db | 3.4 MB 00:00:00
No packages marked for update

You’ve now set up a repository on the local /opt/repos/rhel7 directory.
12.	 Restore the original files. Open the subscription-manager.conf file in the /etc/yum/

pluginconf.d directory and then set enabled=1. Move the backed-up files from the
/root directory to /etc/yum.repos.d. If you want to restore the original configuration,
delete or move the rhel7.repo file from that directory. Run the yum clean all
command again.

Third-party Repositories
Other groups of third-party developers create packages for RHEL 7. They include packages
for some popular software not supported by Red Hat. The websites for two of these third
parties can be found at https://fedoraproject.org/wiki/EPEL and http://repoforge.org.

370  Chapter 7  Package Management

To add third-party repositories to a system, you’d create a custom .repo file in the
/etc/yum.repos.d directory.

Some repositories, such as EPEL (Extra Packages for Enterprise Linux), simplify the
configuration by providing an RPM package that includes a .repo configuration file and a
GPG key to verify the packages. To configure the repository, all you have to do is install that
RPM file:

rpm -ivh https://dl.fedoraproject.org/pub/epel/7/x86_64/e/ 
epel-release-7-5.noarch.rpm

If you want to disable any repository in the /etc/yum.repos.d directory, add the following
directive to the applicable repository file:

enabled=0

Basic yum Commands
If you want to learn more about the intricacies of the yum command, run the command by
itself. You’ll see the following output scroll by, probably far too fast. Of course, you can pipe
the output to the less command pager with the yum | less command.

yum
Loaded plugins: langpacks, product-id, subscription-manager
You need to give some command
usage: yum [options] COMMAND

List of Commands
...

You’ll examine how a few of these commands and options work in the following sections.
Although you won’t have Internet access during a Red Hat exam, you might have a network
connection to a locally configured repository, which you should be ready to configure via
the appropriate file in the /etc/yum.repos.d directory, as described earlier. As well as during
the exam, yum is an excellent tool for administering Red Hat systems.

Dependencies and the yum Command  371

Start with a simple command: yum list. It’ll return a list of all packages, whether they’re
installed or available, along with their version numbers and repositories. yum list | grep
packagename tells you what version of a package you will get with a yum install. If you
want to show all the configured repositories, you can do this with yum repolist all. More
information about a specific package can be obtained via the yum info command. For
example, the following command is functionally equivalent to rpm -qi samba:

yum info samba

The rpm -qi command works if the queried package is already installed. The yum info
command is not subject to that limitation.

Installation Mode
There are two basic installation commands. If you haven’t installed a package before, or you
want to update it to the latest stable version, run the yum install packagename command.
You don’t need to specify the version or release number. Only the package name is required.
For example, if you’re checking for the latest version of the Samba RPM, the following
command will update it or add it if it isn’t already installed on the target system:

yum install samba

If you just want to keep the packages on a system up to date, run the yum update
packagename command. For example, if you already have the Samba RPM installed, the
following command makes sure it’s updated to the latest version:

yum update samba

If you haven’t installed Samba, this command doesn’t add it to your installed packages.
In that way, the yum update command is analogous to the rpm -F command.

Of course, the yum command is not complete without options that can remove a
package. The first one is straightforward because it uninstalls the Samba package along with
any dependencies:

yum remove samba

The yum update command by itself is powerful; if you want to make sure that all
installed packages are updated to the latest stable versions, run the following command:

yum update

The yum update command may take some time as it communicates with the Red Hat
Portal or other repositories. It may need to download the current database of packages with
all dependencies. It then finds all packages with available updates and adds them to the list
of packages to be updated. It finds all dependent packages if they’re not already included in
the list of updates.

372  Chapter 7  Package Management

What if you just want a list of available updates? The yum list updates command can
help there. It’s functionally equivalent to the yum check-update command.

But what if you aren’t quite sure what to install? For example, if you want to install the
Evince document reader and think the operational command includes the term “evince,”
then the yum whatprovides “*evince*” command can help.

Alternatively, to search for all instances of files with the .repo extension, run the
following command:

yum whatprovides "*.repo"

It lists all instances of the packages with files that end with the .repo extension, with the
associated RPM package. The wildcard is required because the whatprovides option
requires the full path to the file. It accepts partial filenames; for example, the yum
whatprovides “/etc/systemd/*” command returns the RPM associated with files in the
/etc/systemd directory. Once the needed package is known, you can proceed with the
yum install packagename command.

In many cases, problems with yum can be solved with the yum clean all
command. If there are recent updates to Red Hat packages (or third-party
repositories), this command flushes the current cache of headers, allowing you
to synchronize headers with configured repositories, without having to wait the
default six hours before the cache is automatically flushed.

Security and yum
GPG digital signatures can verify the integrity and authenticity of yum updates. It’s the
same system described earlier in this chapter for RPM packages. As an example, look at the
output the first time a new package is installed over a network on RHEL 7:

yum install samba

After packages are downloaded, you’ll see something similar to the following messages:

Importing GPG key 0xFD431D51:
 Userid : "Red Hat, Inc. (release key 2) <security@redhat.com>"
 Fingerprint: 567e 347a d004 4ade 55ba 8a5f 199e 2f91 fd43 1d51
 Package : redhat-release-server-7.0-1.el7.x86_64 (@anaconda/7.0)
 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
Is this ok [y/N]: y
Importing GPG key 0x2FA658E0:
 Userid : "Red Hat, Inc. (auxiliary key) <security@redhat.com>"
 Fingerprint: 43a6 e49c 4a38 f4be 9abf 2a53 4568 9c88 2fa6 58e0
 Package : redhat-release-server-7.0-1.el7.x86_64 (@anaconda/7.0)

Dependencies and the yum Command  373

 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
Is this ok [y/N]: y

If you’re simultaneously downloading packages from other repositories, additional GPG
keys may be presented for approval. As suggested by the last line, N is the default response;
you actually have to type in y to proceed with the download and installation—not only of
the GPG key, but also of the package in question.

You may notice that the GPG key used is from the same directory of keys associated with
the rpm command earlier in this chapter.

Updates and Security Fixes
Red Hat maintains a public list of errata, classified by RHEL release, at https://rhn.redhat
.com/errata. If you have a RHEL subscription, affected packages are normally made available
through the Red Hat Portal; for RHSM-connected machines, all you need to do is run the
yum update command periodically. This list is useful for those third parties who use RHEL
source code, such as CentOS, Scientific Linux, and even Oracle Linux; typically RHEL
rebuilds provide similar errata shortly after Red Hat.

Package Groups and yum
The yum command can do more. It can install and remove packages in groups. These are
the groups defined in the *-comps-Server.x86_64.xml file described in Chapter 2. One
location for that file is on the RHEL 7 DVD in the /repodata subdirectory. At the start of
most of those stanzas, you’ll see the <id> and <name> XML directives, which list two
identifiers for each of those groups.

But that’s a lot of work to find a package group. The yum command makes it simpler.
With the following command, you can identify available package groups from configured
repositories:

yum group list

Note how the groups are divided into installed and available groups. Some of the groups listed
may be of particular interest, such as “Basic Web Server,” which you’ll use in Chapter 14. To find
out more about this group, run the following command. The output is shown in Figure 7-10.

yum group info "Basic Web Server"

There are two types of groups in yum: regular groups, which include standard RPM
packages, and environment groups, which are made of other groups. “Basic Web Server”
in Figure 7-10 is identified as an “environment group” and is in fact a collection of regular
groups. Environment groups and regular groups are associated with an environment ID and
group ID, respectively, which is shown by the yum group info command. These IDs are

374  Chapter 7  Package Management

alternative names for the groups, without spaces or uppercase characters, and they are often
used in Kickstart configuration files.

To list all groups, you can type

yum group list hidden

Let’s get some information about one of the regular groups:

yum group info "Remote Desktop Clients"

Note how the packages are all listed as “Optional Packages.” In other words, they’re not
normally installed with the package group. Thus, suppose you were to run the following
command:

yum group install "Remote Desktop Clients"

Nothing would be installed. Desired packages from this package group have to be
specifically named to be installed with commands like the following:

yum install tigervnc

	 FIGURE 7-10	  

Packages in the
Basic Web Server
group

Dependencies and the yum Command  375

But optional packages are not the only category. The following command lists all
packages in the “Print Server” package group. The output is shown in Figure 7-11.

yum group info "Print Server"

Packages in the Print Server group are classified in two other categories. Mandatory
packages are always installed with the package group. Default packages are normally
installed with the package group; however, specific packages from this group can be
excluded with the -x switch. For example, the following command installs the two
mandatory and six default packages:

yum group install "Print Server"

In contrast, the following command excludes the paps and the gutenprint-cups packages
from the list of those to be installed:

yum group install "Print Server" -x paps -x gutenprint-cups

After running this command, show again a list of the packages in the Print Server
package group:

yum group info "Print Server"

The output is shown in Figure 7-12. Compare this with Figure 7-11. You will notice that
some of the packages have an equal sign (=) marker in front. This means that the corresponding
package was installed using the yum group install command. Conversely, the minus marker (-)
indicates that a package was excluded from installation and will not be installed if we upgrade
or install the group. Similarly, the plus marker (+) indicates that a package is not installed, but it

	 FIGURE 7-11	  

Packages in the
Print Server group

376  Chapter 7  Package Management

will be added to the system if we install or upgrade the group. If no marker is present, then the
package was installed, but not as part of a yum group install command.

The options to the yum command are not complete unless there’s a command that can
reverse the process. As suggested by the name, the group remove command uninstalls all
packages from the noted package group:

yum group remove "Print Server"

Exclusions are not possible with the yum group remove command. If you don’t want to
remove all packages listed in the output to the command, it may be best to remove target
packages individually.

More yum Commands
A number of additional yum-related commands are available. Two of them may be of
particular interest to those studying for the Red Hat exams: yum-config-manager and
yumdownloader, which can display all current settings for each repository as well as
download individual RPM packages. One more related command is createrepo, which can
help you set up a local repository.

View All Directives with yum-config-manager
To some extent, the directives listed in the yum.conf and related configuration files provide
only a small snapshot of available directives. To review the full list of directives, run the
yum-config-manager command. Pipe it to the less command as a pager. It includes more
than 300 lines. The excerpt from the [main] section shown in Figure 7-13 includes settings
that apply to all the configured repositories.

	 FIGURE 7-12	  

Packages after the
Print Server group
is installed

Dependencies and the yum Command  377

Some of the directives associated with yum are not filled in, such as exactarchilist; some
don’t really matter, such as the color directives. Some of the other significant directives
are shown in Table 7-5. It is not a comprehensive list. If you’re interested in a directive not
shown, it’s defined in the man page for the yum.conf file.

yum-config-manager can also manage repositories. For example, if you know the URL
of a repository, you can automatically generate a configuration file using a command similar
to the following:

yum-config-manager --add-repo="http://192.168.122.1/inst"

Package Downloads with yumdownloader
As suggested by the name, the yumdownloader command can be used to download
packages from yum-based repositories. It’s a fairly simple command. For example,
the following command reviews the contents of configured repositories for a package
named cups:

yumdownloader cups

	 FIGURE 7-13	  

A partial list of
yum directives

378  Chapter 7  Package Management

Either the RPM package is downloaded to the local directory or the command returns
the following error messages:

No Match for argument cups
Nothing to download

Sometimes, more specifics are required. If there are multiple versions of a package stored
on a repository, the default is to download the latest version of that package. That may not
always be what you want. For example, if you want to use the originally released RHEL 7
kernel, use the following command:

yumdownloader kernel-3.10.0-123.el7

Create Your Own Repository with createrepo
An earlier version of the RHCE objectives for RHEL 6 suggested that you should know how
to “create a private yum repository.” Although that objective has since been removed, it’s a
necessary job skill for a Red Hat system engineer.

Configuration
Directive in yum Description

alwaysprompt Prompts for confirmation on package installation or removal.
assumeyes Set to no by default; if set to 1, yum proceeds automatically with

package installation and removal.
cachedir Set to the directory for database and downloaded package files.
distroverpkg Lists the RPM packages that yum checks to find the version of the

Linux distribution installed on the current machine.
enablegroups Supports yum group* commands.
installonlypkgs Lists packages that should never be updated; normally includes

Linux kernel packages.
logfile Specifies the name of file with log information, normally

/var/log/yum.log.
pluginconfpath Notes the directory with plugins, normally /etc/yum/pluginconf.d.
reposdir Specifies the directory with repository configuration files.
ssl* Supports the use of the Secure Sockets Layer (SSL) for

secure updates.
tolerant Determines whether yum stops if an error is encountered with

one of the packages.

	 TABLE 7-5	   Configuration Parameters from yum-config-manager

More Package Management Tools  379

Custom repositories can provide additional control. Enterprises that want to control
the packages installed on their Linux systems can create their own customized repository.
Although this can be based on the standard repositories developed for a distribution, it
can include additional packages such as custom software unique to an organization. Just
as easily, it can omit packages that may violate organizational policies such as games.
Limits on the choices for certain functions such as browsers can minimize related support
requirements.

To create a customized repository, you need to collect desired packages in a specific
directory. The createrepo command can process all packages in that directory. The
database is created in XML files in a repodata/ subdirectory. An example of this package
database already exists in the repodata/ subdirectory of the RHEL 7 DVD.

The Red Hat Portal enables support of customized repositories with related products,
such as Red Hat Satellite Server. For more information on repository management, see
Linux Patch Management written by Michael Jang and published by Prentice Hall.

CERTIFICATION OBJECTIVE 7.04

More Package Management Tools
Whether a Red Hat system is connected to Red Hat Customer Portal or repositories
provided by a distribution such as CentOS or Scientific Linux, it will use the same basic
package management tools. Regardless of source, the rpm command is used to process RPM
packages. Higher-level tools such as the yum command are used to satisfy dependencies
and install groups of packages. This makes sense because the rebuild distributions are based
on the same source code as RHEL 7 and all are distributed via RPM.

These similarities extend to GUI-based package management tools. While the identity
of these tools has changed between RHEL 6 and RHEL 7, they are still front ends to the
rpm and yum commands. They take advantage of the package groups configured in the
.xml file described in Chapter 2. Since Red Hat uses GNOME as the default GUI desktop
environment, the associated software management tools are based on that interface.

In RHEL 7, GUI-based package management tools rely on PackageKit, a common
abstraction layer that provides a unified interface to all Linux software management
applications. However, it’s quite possible that PackageKit won’t be available on a server, or
perhaps even a system configured for a Red Hat exam. If you absolutely need PackageKit,
install the required RPMs with the yum install gnome-packagekit command. Of course, if
you’re already comfortable with the yum command, you may not need PackageKit.

380  Chapter 7  Package Management

Although the RHN is listed
as part of the RHCSA objectives, it’s listed in
context as a choice. Whether you’re installing
or updating software packages from RHN,

“a remote repository, or a local filesystem,”
you can use the rpm and yum commands. Of
course, it's simplest if you have an official
Red Hat subscription.

The GNOME Software Update Tool
The Software Update tool can be started from a GUI terminal with the gpk-update-viewer
command. Alternatively, from the GNOME Desktop Environment, click Applications |
System Tools | Software Update. The tool, as shown in Figure 7-14, lists packages that are
available for update.

	 FIGURE 7-14	   The GNOME Software Update tool

More Package Management Tools  381

It’s a pretty straightforward interface. It’s effectively a front end to the yum update
command. Note the additional information, with a description of changes.

Automated Updates
It is important to install the latest security updates as quickly as possible. To do that, open
the Software Update Preferences tool shown in Figure 7-15. You can open it from a GUI
command line with the gpk-prefs command. You can configure the system to check for
updates on an hourly, daily, or a weekly basis, or not at all. When updates are found, you
can configure automatic installation of all available updates, of only security updates, or of
nothing at all.

GNOME Software Tool
You can add, update, and remove packages with a graphical tool. To start the GNOME
Software tool from a GUI command line, run the gpk-application command, or click
Applications | System Tools | Software. This opens the tool shown in Figure 7-16. Here, you
can install more than one package or package group at a time. Once packages are selected

	 FIGURE 7-15	   The GNOME Software Update Preferences tool

382  Chapter 7  Package Management

(or deselected), the tool automatically calculates dependencies and installs (or removes)
them, along with the selected packages.

You can use the GNOME Software tool to add the packages or package groups of
your choice. In the upper-left part of the screen is the Package Collections option,
which lists the same groups shown in the output to the yum group list command
described earlier.

Software packages are further subdivided in the lower-left part of the screen. When a
package or package group is selected or deselected for installation or removal, the Apply
Changes button becomes clickable. Once clicked, the tool uses the yum command to
calculate dependencies. If there are no dependencies, the installation proceeds immediately.
If there are dependencies, the entire list of packages to be installed or removed is presented
for your approval.

EXERCISE 7-2

Installing More with yum and the GNOME Software Tool
This exercise requires a network connection to a remote repository, or at least a RHEL 7
DVD copied or mounted as a repository, as configured earlier in this chapter. If you’re using
a rebuild of RHEL 7, you’ll need to make sure the connection to the core repository is active,

	 FIGURE 7-16	   The GNOME Software tool

More Package Management Tools  383

perhaps with a ping command to the host of that repository, as defined in the appropriate file
in the /etc/yum.repos.d directory. Given the possible variations, exact steps are not possible.

1.	 Run the yum list command. Assuming an active network connection and a
responsive repository, you’ll see a full list of available packages, including those
already installed. Note the label in the right column; it will either show the repository
where a package is available or note that the package is already installed.

2.	 Enter the gpk-application command in a GUI command line. This should open the
GNOME Software tool.

3.	 In a second command-line console, type in the yum group list command. In the
GNOME Software tool, select Package Collections. Compare the list of package
groups in each output.

4.	 Review available package groups in the GNOME Software tool. For example, click
the arrow next to Servers. Under the options that appear, click FTP Server. There
are only two official packages in the RHEL 7 configuration of this group. Select the
packages, which will be installed when you click Apply Changes.

5.	 Locate the text box in the upper-left corner of the GNOME Software tool. Type in a
common search term such as gnome and watch as a long list of packages are shown.
Compare the result to the output of the yum search gnome command.

6.	 Use a less common search term such as iptables. Highlight the iptables package and
review it in the lower-right part of the screen. Compare the result to the output of
the yum info iptables command.

7.	 Select again the iptables packages and click the Files and Dependent Packages
buttons in the lower-right part of the screen. Compare the results to the output of
the commands repoquery -l iptables and yum deplist iptables.

8.	 Once you’ve selected some packages, click Apply Changes. If there are dependencies,
they will be automatically installed.

9.	 Wait as packages are installed. When finished, close the GNOME Software tool.

Red Hat Subscription Manager
The RHCSA exam objectives require candidates to be able to “install and update software
packages from Red Hat Network.” However, at the time of writing, RHEL 7 systems no
longer support the use of the Red Hat Network (RHN). Subscriptions to RHN repositories
are available only through a local installation of an older version of Red Hat Satellite.
Newer versions of Red Hat Satellite Server and stand-alone RHEL 7 systems use the Red

384  Chapter 7  Package Management

Hat Customer Portal Subscription Management (RHSM) to access Red Hat software
repositories.

Remember, the related objective suggests that all you need to know is how to install and
update packages from the RHN. And that skill was already covered with the rpm and yum
commands, along with the related GUI tools discussed in most of this chapter.

Perhaps the key benefit of Red Hat Satellite (or an alternative such as Spacewalk or
Katello) is the ability to manage all RHEL and rebuild distribution systems remotely over a
web-based interface. Once an appropriate connection is configured from the client systems,
Satellite Server can even run remote commands on any schedule. If you’re administering
a whole bunch of systems, Red Hat Satellite supports configuration of systems in groups.
For example, if there are 10 systems configured as RHEL 7–based web servers, you can
configure those systems as a single group. You can then schedule a single command
that’s applied to all of those systems remotely. For more information on Red Hat Satellite,
see the latest version of the documentation, available from https://access.redhat.com/
documentation/.

If you have access to the Red Hat Customer Portal Subscription Management (RHSM),
take the following steps to register and subscribe to a RHEL 7 system:

1.	 Run the following command to register a system with RHSM. Include a username
and password of a valid Red Hat account. If the system is already registered, use the
--force command option to re-register the machine.

subscription-manager --username=USERNAME --password=PASSWORD

2.	 Subscribe the system to a Red Hat product. In the following command, the --auto
option finds the most appropriate subscription:

subscription-manager attach --auto

3.	 Alternatively, list all available subscriptions. Take note of the pool IDs.

subscription-manager list --available

Then, use the pool ID that you have retrieved from the last command to attach a
system to a subscription:

subscription-manager attach --pool=8a85f98146f719180146fd9593b7734c

4.	 Review current settings. Run the following command to list the subscriptions attached
to the system:

subscription-manager list

Certification Summary  385

5.	 Show all available repositories for the system:

subscription-manager repos

6.	 You can enable additional repositories with the following command:

subscription-manager repos --enable=REPOID

7.	 If you prefer, you can use the GUI version of Subscription Manager, which can
be started with the subscription-manager-gui command. Alternatively, from the
GNOME Desktop Environment, click Applications | System Tools | Red Hat Sub-
scription Manager.

CERTIFICATION SUMMARY
This chapter focuses on the management of RPM packages. With different command
options, you also saw how the rpm tool installs, removes, and upgrade packages, as well
as how it works locally and remotely. When presented with a new version of a kernel, it’s
important to never replace the existing kernel with rpm. A properly configured installation
of a later kernel version does not overwrite, but brings the kernels together, side by side.
You’ll then be able to boot into either kernel.

With the rpm command, you also learned how to query packages, to examine to which
package a file belongs, to validate a package signature, and to find the current list of installed
RPMs. You also saw the difficulties associated with dependencies that drove users to the
yum command.

The yum command is, in part, a front end to the rpm command. When there are
dependencies, it installs those packages simultaneously. You learned how to configure
Red Hat and other repositories to work with the yum command. You should now be able
to configure even the RHEL 7 DVD as its own repository. As you saw, the yum command
also can install or remove package groups, as defined by the XML database file of packages
on the RHEL 7 DVD and other repositories. The yum command is fully compatible with
the RHSM.

Although additional package management tools are available from the GUI, they are front
ends to the yum and rpm commands. With the gpk-update-viewer command, you started
the Software Update tool to identify and install available updates. With the gpk-prefs
command, you started the Software Update Preferences tool, which can check for and install
security or all available updates on a regular schedule. With the gpk-application command,
you opened the GNOME Software tool, which also can be used to add or remove packages
and package groups. If you have a RHEL subscription, systems can also be kept up to date
and registered to RHSM through the subscription-manager command.

386  Chapter 7  Package Management

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 7.

The Red Hat Package Manager
❑❑ The RPM database tracks where each file in a package is located, its version number,

and much more.
❑❑ The rpm -i command installs RPM packages.
❑❑ The rpm -e command uninstalls RPM packages.
❑❑ The rpm command can even install RPMs directly from remote servers.
❑❑ RPM package verification is supported by the GPG keys in the /etc/pki/rpm-gpg

directory.
❑❑ Kernel RPMs should always be installed, never upgraded.
❑❑ The Upgrade mode of RPM replaces the old version of the package with the new one.

More RPM Commands
❑❑ The rpm -q command determines whether packages are installed on a system; with

additional switches, it can list more about a package and identify the package for a
specific file.

❑❑ Package signatures can be checked with the rpm --checksig (or -K) command.
❑❑ The rpm -V command can identify files that have changed from the original

installation of the package before the RPM is installed.
❑❑ The rpm -qa command lists all currently installed packages.

Dependencies and the yum Command
❑❑ By including additional required packages, the yum command can help avoid

“dependency hell.”
❑❑ The behavior of the yum command is configured in the /etc/yum.conf file, plugins

in the /etc/yum/pluginconf.d directory, and repositories configured in the
/etc/yum.repos.d directory.

❑❑ Red Hat organizes packages in several different repositories for RHEL 7.
❑❑ Repositories for rebuild distributions and from third parties are accessible online.
❑❑ The yum command can install, erase, and update packages. It also can be used to

search in different ways.

Self Test  387

❑❑ The yum command uses the GPG keys developed for RPM packages.
❑❑ The yum command can install, remove, and list package groups.

More Package Management Tools
❑❑ RHEL 7 package management tools are based on the PackageKit built for GNOME.
❑❑ With the GNOME Software tool, you can install and remove packages and package

groups.
❑❑ The PackageKit also includes tools focused on current updates. It can also set up

updates of security packages or all packages on a schedule.
❑❑ The RHSM and Red Hat Satellite can help you manage subscribed systems remotely

using a web-based interface.

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear
in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

The Red Hat Package Manager

1.	 What command would you use to install the penguin-3.26.x86_64.rpm package, with extra
messages in case of errors? The package is on the local directory.

2.	 What command would you use to upgrade the penguin RPM with the penguin-3.27.x86_64.rpm
package? The package is on the ftp.remotemj02.abc server.

388  Chapter 7  Package Management

3.	 If you’ve downloaded a later version of the Linux kernel to the local directory and the package
filename is kernel-3.10.0-123.13.2.el7.x86_64.rpm, what’s the best command to make it a part of
your system?

4.	 What directory contains RPM GPG keys on an installed system?

More RPM Commands

5.	 What command lists all currently installed RPMs?

6.	 What command lists all the files in the package penguin-3.26.x86_64.rpm?

7.	 If you’ve downloaded an RPM from a third party called third.i686.rpm, how can you validate the
associated package signature?

Dependencies and the yum Command

8.	 What is the full path to the directory where the location of yum repositories are normally
configured?

9.	 What command searches yum repositories for the package associated with the /etc/passwd file?

More Package Management Tools

10.	 What command-line command lists the package groups shown in the GNOME Software tool?

11.	 Name two allowable time periods for automatic updates, as defined by the Software Update
Preferences tool.

12.	 What command from the console starts the process of registration on RHSM?

Self Test Answers  389

LAB QUESTIONS
Red Hat presents its exams electronically. For that reason, the labs in this chapter are available from
the DVD that accompanies the book in the Chapter7/ subdirectory. They’re available in .doc, .html,
and .txt format to reflect standard options associated with electronic delivery on a live RHEL 7 system.
In case you haven’t yet set up RHEL 7 on a system, refer to the first lab of Chapter 2 for installation
instructions. The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

SELF TEST ANSWERS

The Red Hat Package Manager

1.	 The command that installs the penguin-3.26.x86_64.rpm package, with extra messages in case of
errors, from the local directory is

rpm -iv penguin-3.26.x86_64.rpm

	 Additional switches that don’t change the functionality of the command, such as -h for hash
marks, are acceptable. This applies to subsequent questions as well.

2.	 The command that upgrades the aforementioned penguin RPM with the penguin-3.27.x86_64
.rpm package from the ftp.remotemj02.abc server is

rpm -Uv ftp://ftp.remotemj02.abc/penguin-3.26.x86_64.rpm

	 If you use the default vsFTP server, the package may be in the pub/Packages/ subdirectory.
In other words, the command would be

rpm -Uv ftp://ftp.remotemj02.abc/pub/Packages/penguin-3.26.i386.rpm

	 Yes, the question is not precise—but that’s what you see in real life.

390  Chapter 7  Package Management

3.	 If you’ve downloaded a later version of the Linux kernel to the local directory and the package
filename is kernel-3.10.0-123.13.2.el7.x86_64.rpm, the best way to make it a part of your system
is to install it—and not upgrade the current kernel. Kernel upgrades overwrite existing kernels.
Kernel installations allow kernels to exist side by side; if the new kernel doesn’t work, you can still
boot into the working kernel. As the desired package is already downloaded, you’d use a command
similar to the following:

rpm -iv kernel-3.10.0-123.13.2.el7.x86_64.rpm

	 Variations of the rpm command, such as rpm -i and rpm -ivh, are acceptable. However, variations
that upgrade, with the -U or -F switches, are incorrect.

4.	 The directory with RPM GPG keys on an installed system is /etc/pki/rpm-gpg. The GPG keys on
the RHEL 7 CD/DVD are not “installed” on a system.

More RPM Commands

5.	 The command that lists all installed RPMs is

rpm -qa

6.	 The command that lists all the files in the package penguin-3.26.x86_64.rpm is

rpm -ql penguin-3.26.x86_64.rpm

7.	 If you’ve downloaded an RPM from a third party, call it third.i686.rpm, you’ll first need to
download and install the RPM-GPG-KEY file associated with that repository. You can then
validate the associated package signature with a command like the following (note the uppercase
-K; --checksig is equivalent to -K):

rpm -K third.i386.rpm

Dependencies and the yum Command

8.	 The yum command repositories are normally configured in files in the /etc/yum.repos.d directory.
Technically, yum command repositories can also be configured directly in the /etc/yum.conf file.

9.	 The yum whatprovides /etc/passwd command identifies packages associated with that file.

More Package Management Tools

10.	 This is a slightly tricky question because the yum group list command lists the package groups
also shown in the GNOME Software tool.

Lab Answers  391

11.	 Allowable time periods for updates, as defined by the Software Update Preferences tool, are
hourly, daily, and weekly.

12.	 The subscription-manager command starts the process of registering a system on RHSM.

LAB ANSWERS

Lab 1
When the lab is complete, run the following commands to verify the connection:

yum clean all
yum update

The output should look similar to the following:

Loaded plugins: langpacks, product-id, subscription-manager
inst | 3.7 kB 00:00
inst/primary_db | 2.9 MB 00:00
Setting up Update Process

This output verifies a successful connection to the FTP server. If you see something significantly
different, check the following in the /etc/yum.repos.d/file.repo file:

■■ Make sure the stanza in this file starts with [inst].
■■ Check the URL associated with the baseurl directive. It should match the URL of the FTP server

defined in Chapter 1, Lab 2. You should be able to run the lftp and ftp commands with that URL
from a command-line interface. If that doesn’t work, either the FTP server is not running or
messages to that server are blocked by a firewall.

■■ If there were problems, fix them. Then try the previous commands again.

Lab 2
One way to check all of the files in the /usr/sbin directory is to use the rpm -Va | grep /usr/sbin
command.

If successful, you’ll identify the /usr/sbin/vsftpd and /etc/vsftpd/vsftpd.conf files as different from their
original versions, as installed from the RPM. Changes to a configuration file are not a big deal, especially if
it has been customized in any way. However, changes to the binary file are a reason for suspicion.

Assuming standard Red Hat RPM packages, removal and reinstallation should preserve changes to
the vsftpd.conf file in a vsftpd.conf.rpmsave file.

392  Chapter 7  Package Management

If you really do have a security concern, additional measures are appropriate. For example, some
security professionals might compare all files on a suspect system to the files on a verified baseline system.

In that case, it may be simplest to take a copy or clone of the baseline system, reinstall the vsftpd
RPM, and reconfigure it as needed. Assuming the baseline system is secure, you’d then be reasonably
sure the new server would also be secure.

The changes made by the script to this lab set a new modification time for the /usr/sbin/vsftpd
binary and appended a comment to the end of the vsftpd.conf configuration file. If you want to restart
with fresh copies of these packages, back up your current vsftpd.conf file and run the rpm -e vsftpd
command to uninstall the package. If the RPM package was reconfigured, you should see at least the
following warning message:

warning: /etc/vsftpd/vsftpd.conf saved as /etc/vsftpd/vsftpd.conf.rpmsave

You can then reinstall the original package from either the installation DVD or a remote repository.
Alternatively, you could delete (or move) the changed files and then run the following command to
force the rpm command to provide the original copies of these files from the associated package. The
version number is based on the RHEL 7.0 DVD.

rpm -ivh --force vsftpd-3.0.2-9.el7.x86_64.rpm

Lab 3
This lab is intended to help you examine what the yum update command can do. It’s the essential front
end to GUI update tools. As you can see from the update.txt file created in this lab, the messages display
how yum appears for all newer packages from configured repositories or the RHN, downloads their
headers, and uses them to check for dependencies that also need to be downloaded and installed.

Lab 4
This lab should be straightforward because it involves the use of the Software Update Preferences tool,
which you can start from a GUI command line with the gpk-prefs command.

Lab 5
This lab is somewhat self-explanatory and is intended to help you explore what happens when you
properly install a new kernel RPM. As with other Linux distributions, when you install (and do not use
upgrade mode for) a new kernel, two areas are affected.

The new kernel is added as a new option in the GRUB2 configuration menu. The existing kernel
should be retained as an option in that menu. When you reboot the system, try the new kernel. Don’t
hesitate to reboot the system again and then try the other option, probably the older kernel.

Lab Answers  393

When you review the /boot directory, all of the previously installed boot files should be there. The
new kernel RPM should add matching versions of all of the same files—with different revision numbers.

To keep this all straight, it helps if you made copies of the original versions of the GRUB 2
configuration file and the file list in the /boot directory. If you choose to retain the newly installed
kernel, great. Otherwise, uninstall the newly installed kernel. This is one case where revision numbers
are required with the rpm -e command; the following is based on the removal of the kernel and kernel-
firmware packages, based on version number 3.10.0-229.el7:

rpm -e kernel-3.10.0-229.el7.x86_64
rpm -e linux-firmware-20140911-0.1.git365e80c.el7

If the revision number of the kernel or kernel-firmware package that you installed during this lab is
different, adjust the commands accordingly.

Lab 6
This lab is designed to give you practice with both the yum command and the Add/Remove Software
tool. It should help you prepare for Chapter 9 and provide the skills required to install services for other
chapters. You should realize by now that because all packages in the Remote Desktop Clients package
group are optional, the yum group install “Remote Desktop Clients” command doesn’t install
anything. You’ll need to install each of the optional packages by name.

To identify the names of the packages to be installed, run the yum group info “Remote Desktop
Clients” command. Be sure to install every package from that group on both systems. The best method
is with the yum install package1 package2 ... command, where package1, package2, and so on, are
names of packages in the “Remote Desktop Clients” package group.

	__DdeLink__6978_153743261

