
Chapter 5
The Boot Process

5.01	 The BIOS and the UEFI

5.02	 Bootloaders and GRUB 2

5.03	 Between GRUB 2 and Login

5.04	 Control by Target

5.05	 Time Synchronization

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

This chapter is focused on what happens from the moment a system is powered up to the 
time a login prompt is available. This is called the boot process. When RHEL 7 is properly 
installed, the BIOS/UEFI points to a specific media device. Assuming it’s a local hard drive, 

the GUID Partition Table (GPT) or Master Boot Record (MBR) of that device points to the GRUB 2 
bootloader. Once an option to boot RHEL 7 is selected in GRUB 2, the associated commands point 
to and initialize the Linux kernel, which then starts systemd, the first Linux process. The systemd 
process then initializes the system and activates appropriate system units. When Linux boots into 
a specific target, it starts a series of units, including the client associated with the Network Time 
Protocol (NTP). You can customize this process.



242  Chapter 5  The Boot Process

INSIDE THE EXAM

Understanding the Boot Process
Objectives related to the boot process have 
been consolidated into the RHCSA exam. 
Perhaps the most basic skill related to the boot 
process is an understanding of the commands 
that start and stop the boot process, such as 
systemctl poweroff and systemctl reboot:

■■ Boot, reboot, and shut down a system 
normally

Of course, that starts with the way a system 
is powered up. In this chapter, you’ll be 
introduced to systemd targets, which replace 
the traditional runlevels in RHEL 6 and other 
older Linux distributions. From the standard 
RHEL 7 boot menu, you need to know how to

■■ Boot systems into different targets 
manually

Closely related to this objective is this one:

■■ Interrupt the boot process in order to 
gain access to a system

If you are already familiar with single-user 
mode in RHEL 6, you should understand that 
“access” in single-user mode is password-free 
access to the root administrative account in 
a limited environment. You should be able 
to achieve the same objective in RHEL 7 and 
gain access to a system to recover a lost root 
password or to troubleshoot issues during the 
boot process.

Also closely related is this objective, focused 
on the configuration of different targets:

■■ Configure systems to boot into a 
specific target automatically

As Linux is a network operating system, and 
as most users can’t do much without network-
ing, it’s important to know how to

■■ Configure network services to start 
automatically at boot

The following RHCSA objective is strictly 
related to the previous one:

■■ Start and stop services and configure 
services to start automatically at boot

With the focus on the boot process, you’ll 
also learn how to

■■ Modify the system bootloader

Closely related to these objectives, and part 
of the boot process, are objectives related to 
how filesystems are mounted, as covered in 
Chapter 6.

The Network Time Service
This chapter covers the configuration of NTP, 
based on the following objective:

■■ Configure a system to use time services



The BIOS and the UEFI  243

CERTIFICATION OBJECTIVE 5.01

The BIOS and the UEFI
Although not officially a Red Hat exam prerequisite or requirement, a basic understanding 
of the BIOS and the UEFI is a fundamental skill for all serious computer users. The UEFI 
has replaced the BIOS on many modern systems and can do so much more. But as the UEFI 
supports changes to boot media in similar ways, the functionality for our purposes is the same.

Because of the variety of BIOS/UEFI software available, this discussion is general. It’s 
not possible to provide any sort of step-by-step instructions for modifying the wide array of 
available BIOS/UEFI menus. In any case, such instructions are not directly relevant either to 
the administration of Linux or to any of the Red Hat exams. However, these skills can help you 
boot from different Linux installation media, access default virtualization settings, and more.

Basic System Configuration
When a computer is powered up, the first thing that starts is the BIOS/UEFI. Based on 
settings stored in stable, read-only memory, the BIOS/UEFI system performs a series of 
diagnostics to detect and connect the CPU and key controllers. This is known as the Power 
On Self Test (POST). If you hear beeps during this process, there may be a hardware 
problem such as an improperly connected hard drive controller. The BIOS/UEFI system 
then looks for attached devices such as the graphics card. After the graphics hardware 
is detected, you may see a screen similar to Figure 5-1, which displays other hardware as 
detected, tested, and verified.

If your system has an UEFI menu, it may include a Trusted Platform Module (TPM). 
Although it’s built to enhance security on a system, it has caused controversy within the 
open-source community due to privacy and vendor lock-in issues. Many open-source 

	 FIGURE 5-1	    
 
The BIOS 
Initialization menu



244  Chapter 5  The Boot Process

professionals are working to minimize any such problems through the Open Trusted 
Computing (OpenTC) group of the European Union. RHEL 7 takes advantage of TPM 
hardware features to enhance system security.

Once complete, the BIOS/UEFI passes control to the boot device, typically the first hard 
drive. The first stage of the GRUB 2 bootloader is normally copied to the MBR or GUID 
Partition Table (GPT). It serves as a pointer to the other information from the GRUB 2 
menu. At that point, you should see a bootloader screen.

Startup Menus
Generally, the only reason to access the BIOS/UEFI menu during the Red Hat exams is to 
boot from different media, such as a CD, floppy, or USB key. In many cases, you can bypass 
this process. 

Sometimes, all you see after POST is a blank screen. The BIOS/UEFI is often configured 
in this way. In that case, you’ll need to do some guessing based on your experience on how 
to access the boot or BIOS menu.

In many cases, boot menus are directly accessible by pressing a key such as esc, del, f1, 
f2, or f12. Such boot menus may have entries similar to the following:

     Boot Menu 
1. Removable Devices 
2. Hard Drive 
3. CD-ROM Drive 
4. USB Drive 
5. Built-In LAN

From that or similar menus, you should be able to select the desired boot device using 
the arrow and enter keys. If that doesn’t work, you’ll have to use the BIOS/UEFI menu to 
boot from the desired drive.

Access to Linux Bootloaders
As noted in Chapter 2, the default bootloader is GRUB 2, and the first part of it (known 
as stage 1) is installed in the MBR or GUID table of the default drive. Normally, the BIOS 
should automatically start the bootloader, with a message similar to

Red Hat Enterprise Linux Server, with Linux 3.10.0-123.el7.x86_64 
Red Hat Enterprise Linux Server, with Linux 0-rescue-662ce234911596f1a75 
... 
The selected entry will be started automatically in 5s.



Bootloaders and GRUB 2  245

Alternatively, if you press a key before those five seconds are complete, GRUB will 
present a menu similar to that shown in Figure 5-2.

If the system includes more than one Linux kernel, or more than one operating system, 
there may be multiple choices available, which you can highlight with the up arrow and 
down arrow keys. To boot Linux from the highlighted option, press enter.

On old PCs (pre-21st century), some BIOSes could not find your bootloader unless it was 
located within the first 1024 cylinders of the hard disk. For that reason, the partition where 
the /boot directory is configured is normally the first available primary partition.

RHEL 7 supports the traditional MBR partitioning layout and the newer GUID Partition 
Table (GPT) format. Whereas the MBR partitioning scheme supports a maximum size 
of 2TB per disk, GPT does not have such limitation. However, to boot RHEL from a disk 
with a GPT partition layout, you need a system with the UEFI firmware interface, rather 
than a traditional BIOS firmware. You should check with your hardware vendor if UEFI is 
supported by your system.

CERTIFICATION OBJECTIVE 5.02

Bootloaders and GRUB 2
The standard bootloader associated with Red Hat Enterprise Linux (RHEL) is GRUB 2, the 
GRand Unified Bootloader version 2. As suggested by the Red Hat exam requirements, for 
the RHCSA exam you need to know how to use the GRUB 2 menu to boot into different 
targets and diagnose and correct boot failures arising from bootloader errors. In GRUB 

	 FIGURE 5-2 	   The GRUB menu



246  Chapter 5  The Boot Process

version 1, which was the default in RHEL 6, the associated configuration file was relatively 
easy to understand and customize. However, although the GRUB 2.0 menu is similar to 
what’s seen on RHEL 6, the steps required to configure that bootloader are quite different, 
as you’ll see later in this chapter.

GRUB, the GRand Unified Bootloader
Red Hat has implemented GRUB 2 as the only bootloader for its Linux distributions. It’s 
normally configured to boot into a configured default kernel. GRUB 2 finds the configuration 
in the /boot directory and displays a menu, which will look similar to Figure 5-2. You can 
use the GRUB 2 menu to boot any operating system detected during the Linux installation 
process, or any other operating system added to appropriate configuration files.

GRUB 2 is flexible. Not only can the configuration be easily generated from the CLI, but 
also it can be edited directly from the GRUB 2 menu. From the menu shown in Figure 5-2, 
you can press e to temporarily edit the file, or press c to open a GRUB 2 command prompt. 
This section is focused on booting into different systemd targets.

Boot into Different Targets
To pass a parameter to the kernel through GRUB 2, press e at the first GRUB menu. This 
allows you to edit the boot parameters sent to the kernel. Locate the line that starts with the 
directive linux16. Scroll down with the down arrow key if necessary. You might then see 
a line of commands similar to the following:

linux16 /vmlinuz-3.10.0-123.el7.x86_64 root=/dev/mapper/rhel-root 
ro rd.lvm.lv=rhel/root vconsole.font=latarcyrheb-sun16 
rd.lvm.lv=rhel/swap crashkernel=auto  vconsole.keymap=uk rhgb 
quiet LANG=en_GB.UTF-8

Yeah, that’s a lot of stuff that will be explained shortly. What matters for the RHCSA is 
that you can add more kernel parameters to the end of this line. For example, if you add 
the string systemd.unit=emergency.target to the end of this line and press ctrl-x, Linux 
starts in a mode of operation called emergency target, which runs a rescue shell.

From the emergency target, type exit. The system will go into the default target, which 
normally is either the multiuser or graphical target. If you have made changes or repairs to 
any partitions, the next step is to reboot the computer with the systemctl reboot command. 
At some point, changes made during a Red Hat exam should be tested with a reboot.

On RHEL 7, the shutdown, reboot, and halt commands are symbolic links to 
systemctl. They have the same effect as the systemctl poweroff, systemctl reboot, 
and systemctl halt commands, respectively.



Bootloaders and GRUB 2  247

Changes must survive a 
reboot during the RHCSA exam, so you’ll 
want to restart your system at least once to 

verify each of the requirements is met even 
after a reboot.

To a certain extent, the concept of the systemd targets is similar to that of runlevels in 
RHEL 6, and is detailed later in this chapter. For now, all you need to know is that when 
RHEL 7 is configured to boot into a GUI, it’s configured to boot into the graphical target by 
default. That target can be changed by appending a systemd.unit=name.target string to the 
end of the kernel command line.

If you encounter a problem with a system booting into the GUI, the first thing to try is to 
add a systemd.unit=multi-user.target at the end of the kernel command line. If successful, 
it will boot RHEL 7 into text mode with a command-line console-based login.

If you need direct access into a recovery shell, add the string systemd.unit=rescue.target 
to the end of the kernel command line. In rare cases, some systems are so troubled, they 
don’t boot into the rescue target. In that case, two other options are available:

■■ systemd.unit=emergency.target  No filesystem is mounted, apart from the root 
filesystem in read-only mode.

■■ init=/sysroot/bin/sh  Starts a shell and mounts the root filesystem in read-only 
mode; does not require a password.

The emergency and rescue targets require the root password to log in and get full root 
administrative privileges. If you have lost the root password, you will need to add the 
string init=/sysroot/bin/sh or rd.break to the end of the kernel command line and follow 
the procedure illustrated in Exercise 5-2. As that supports full administrative privileges, 
including changes to the root administrative password, it’s important to password-protect 
the GRUB 2 menu. Somebody who can change the boot order can achieve the same thing 
with a bootable USB drive, so it is also important to protect your BIOS or UEFI to ensure 
the system only boots the local disk without a password.

Now you should understand how to boot into different targets during the boot process. 
As defined in the Red Hat Exam Prep guide, this is explicitly described as a RHCSA 
requirement:

■■ Boot systems into different targets manually



248  Chapter 5  The Boot Process

Red Hat exams are “closed 
book.” Although you are allowed to use 
all documentation that can be found on 
your RHEL installation, during recovery or 
emergency procedures you may not have 
access to man pages or other documentation 
resources. Therefore, it is extremely 
important that you practice the exercises 

in this chapter without the help of any 
documentation. You should memorize the 
steps to boot into an emergency shell or 
to recover a root password; otherwise, you 
may be in trouble, not just during the RHCSA 
exam, but also in real life when performing 
your job duties as a Linux sysadmin.

EXERCISE 5-1

Boot into a Different Target
One key skill is knowing how to boot into a different systemd target. This exercise assumes 
you’ve configured RHEL 7 per Chapter 2, which sets the graphical target as the default. 
Run the ls -l /etc/systemd/system/default.target command to verify. If the current system 
reflects the defaults, this file should be a symbolic link to the graphical.target file within the 
directory /usr/lib/systemd/system. As an alternative, run the following command:

# systemctl get-default

It should return the string “graphical.target.” Now you can start the exercise.

1.	 Reboot your system using the reboot command.
2.	 When you see the following message, make sure to press any key to access the 

GRUB menu:

The selected entry will be started automatically in 5s.

3.	 Press e to edit the current menu entry.
4.	 Scroll down with the down arrow key to locate the line starting with linux16. 

First, delete the kernel options rhgb quiet. Then, at the end of the line, type 
systemd.unit=multi-user.target and press ctrl-x to boot this kernel.

5.	 Watch the boot messages. What kind of login screen do you see?
6.	 Log in to this system. You can use any existing user account.
7.	 Run the reboot command to restart this system.



Bootloaders and GRUB 2  249

8.	 Repeat Steps 2 through 4, but boot this system into the rescue target by passing the 
option systemd.unit=rescue.target to the kernel.

9.	 Watch the boot messages. What kind of login screen do you see? Which filesystems 
are mounted?

10.	 Repeat Steps 2 through 4, but boot this system into the emergency target by passing 
the option systemd.unit=emergency.target to the kernel.

11.	 Watch the boot messages. What kind of login screen do you see? Do you have to log 
in at all? Which filesystems are mounted?

12.	 Repeat Steps 2 through 4, but this time append rd.break to the kernel line.
13.	 Watch the boot messages. What kind of login screen do you see? Do you have to log 

in at all? Is the root filesystem mounted from the hard drive?
14.	 Run exit to continue the boot sequence.
15.	 Repeat Steps 2 through 4, but boot this system into an emergency shell by passing 

the string init=/sysroot/bin/sh.
16.	 Watch the boot messages. What kind of login screen do you see?
17.	 Type reboot to log out and restart the system.

EXERCISE 5-2

Recover the Root Password
If you boot a RHEL 7 system into the rescue or emergency target, you are prompted for the 
root password. But what if you have forgotten the password? This exercise shows the steps 
required to reset a lost password for the root user. During the password-recovery process, 
you probably won’t have access to documentation. Hence, you should practice the following 
procedure until you can use it in a crisis:

1.	 Use the following command to change the root password to a random string. This 
command hides the random password from you:

# pwmake 128 | passwd --stdin root

2.	 Log out from your session. Try to log in again as the root user. You shouldn't be able 
to log in to the system with the old known root password.

3.	 Reboot the server.
4.	 When you see the following message, press a key to access the GRUB menu:

The selected entry will be started automatically in 5s.



250  Chapter 5  The Boot Process

5.	 Press e to edit the current menu entry.
6.	 Scroll down with the down arrow key to locate the line starting with linux16. Press 

ctrl-e or end to move to the end of the line, and then type the string rd.break.
7.	 Press ctrl-x to boot the system.
8.	 The rd.break directive interrupts the boot sequence before the root filesystem is 

properly mounted. Confirm this by running ls /sysroot. If you know the contents of 
the root filesystem, the output should look familiar.

9.	 Remount the root /sysroot filesystem as read-write and change the root directory to 
/sysroot:

# mount -o remount,rw /sysroot 
# chroot /sysroot

10.	 Change the root password:

# passwd

11.	 Because SELinux is not running, the passwd command does not preserve the 
context of the /etc/passwd file. To ensure that the /etc/passwd file is labeled with the 
correct SELinux context, instruct Linux to relabel all files at the next boot with the 
following command:

# touch /.autorelabel

12.	 Type exit to close the chroot jail, and then type exit again to reboot the system.
13.	 It may take a few minutes for SELinux to relabel all files. Once you get a login 

prompt, confirm that you are able to log in as the root user.

Modify the System Bootloader
The RHCSA specifically requires that you need to know how to “modify the system 
bootloader.” That means you need to know how to configure GRUB 2 in detail. The 
configuration is available in the file /etc/grub2.cfg, which is a symbolic link that points to  
/boot/grub2/grub.cfg on systems configured in BIOS mode, or /boot/efi/EFI/redhat/grub.cfg 
for servers that use an UEFI boot manager. In the rest of this chapter, we will assume that 
you run a traditional BIOS-based system or a UEFI-capable system in BIOS mode. We’ll 
refer to /boot/grub2/grub.cfg as the standard path of the configuration file.

The grub.cfg file is organized into a header section and different menuentry stanzas, 
one for each kernel installed on the system. An excerpt of the file is shown in Figure 5-3. 
Each menuentry block contains two lines starting with the linux16 and initrd16 directives. 
These specify the path of the kernel and of the RAM disk filesystem to be loaded during the 



Bootloaders and GRUB 2  251

boot process. As you saw in the previous section, the linux16 line is especially important. 
This is the entry that you can edit interactively during the boot process to pass additional 
kernel parameters or to boot into a non default systemd target.

Although the number of options and directives in the grub.cfg file may seem 
overwhelming, don’t panic. You never need to touch this file directly. The right approach 
is to generate a new version of this file with the grub2-mkconfig tool, based on the  
/etc/default/grub configuration file and on the scripts in the /etc/grub.d/ directory. The  
/etc/default/grub file is much simpler to understand, safer, and more convenient to edit 
than grub.cfg. Once you have made a modification to /etc/default/grub, generate the new 
GRUB configuration file by running

# grub2-mkconfig -o /boot/grub2/grub.cfg

Do not manually edit the /etc/grub2/grub.cfg file. This file is automatically generated 
when a kernel is installed or updated, and as a result any direct customizations to 
this file would be lost. Use grub2-mkconfig and the /etc/default/grub file to make 
modifications to grub.cfg.

	 FIGURE 5-3	   An excerpt of the grub.cfg file



252  Chapter 5  The Boot Process

The following is a detailed analysis of a typical version of the /etc/default/grub file:

GRUB_TIMEOUT=5 
GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)" 
GRUB_DEFAULT=saved 
GRUB_DISABLE_SUBMENU=true 
GRUB_TERMINAL_OUTPUT="console" 
GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root vconsole.font=latarcyrheb-sun16  
rd.lvm.lv=rhel/swap crashkernel=auto  vconsole.keymap=uk rhgb quiet" 
GRUB_DISABLE_RECOVERY="true"

In the first line, the GRUB_TIMEOUT variable specifies the time in seconds before 
GRUB 2 automatically boots the default operating system. You can interrupt the countdown 
by pressing any key on the keyboard. If this variable is set to 0, GRUB 2 will not display a list 
of bootable kernels, unless you press and hold an alphanumeric key during the BIOS initial 
screen.

The value of the GRUB_DISTRIBUTOR variable returns “Red Hat Enterprise Linux 
Server” on a standard RHEL installation, and is displayed before each kernel-bootable entry. 
You can modify this entry to any string of your choice if you wish.

The next directive is GRUB_DEFAULT and is related to the default kernel that GRUB 2 
loads at boot. The value “saved” instructs GRUB 2 to look at the saved_entry variable in the 
file /boot/grub2/grubenv. This variable is updated with the name of the latest kernel every 
time that a new kernel is installed.

You can update the saved_entry variable and instruct GRUB 2 to boot a different default 
kernel via the grub2-set-default command. As an example,

# grub2-set-default 1

sets the second menu entry in /etc/grub2.cfg as the default kernel. This may be slightly 
confusing because GRUB 2 starts counting from 0. Hence, grub2-set-default 0 points to the 
first available menu entry in /etc/grub2.cfg. Similarly, the command grub2-set-default 1 
points to the second kernel entry, and so on, if included in the configuration file.

The next configuration line in /etc/default/grub defines the variable GRUB_DISABLE_
SUBMENU. This is set to “true” by default to disable any submenu entries at boot. Then 
follows the directive GRUB_TERMINAL_OUTPUT, which tells GRUB 2 to use a text 
console as the default output terminal. The last variable defined in the file is GRUB_
DISABLE_RECOVERY, which disables the generation of recovery menu entries.

The directive GRUB_CMDLINE_LINUX is more interesting. It specifies the options to 
pass to the Linux kernel. For example, rd.lvm.lv tells the name of the logical volumes where 
the root filesystem and swap partition are located. The next options, vconsole.font and 
vconsole.keymap, list the default font and keyboard map, respectively. The crashkernel 
option is used to reserve some memory for kdump, which is invoked to capture a kernel 
core dump if the system crashes. Finally, at the end of the line, the rhgb quiet directives 



Bootloaders and GRUB 2  253

enable the Red Hat graphical boot and hide the boot messages by default. If you want to 
enable verbose boot messages, remove the quiet option from this line.

How to Update GRUB
If you’ve previously installed a different bootloader to the MBR, such as Microsoft’s NTLDR 
or BOOTMGR, just run the grub2-install command. If it doesn’t automatically write 
the GRUB 2 pointer to the MBR, or if multiple hard drives are available, you may need to 
include the hard drive device, such as /dev/sdb. It’s also possible to set up GRUB 2 on a 
portable drive; just specify the device with the command.

When the GRUB 2 configuration file is generated using grub2-mkconfig, no additional 
commands are required. The pointer from the MBR automatically reads the current version 
of the /boot/grub2/grub.cfg file.

The GRUB 2 Command Line
An error in grub.cfg can result in an unbootable system. For example, if GRUB 2 identifies 
the wrong volume as the root partition (/), Linux will hang during the boot process. Other 
configuration errors in /boot/grub2/grub.cfg can lead to a kernel panic during the boot 
process.

Now that you’ve analyzed the GRUB 2 configuration file, you can probably visualize some 
of the effects of errors in this file. If some of the filenames or partitions are wrong, GRUB 2 
won’t be able to find critical files such as the Linux kernel. If the GRUB 2 configuration file 
is completely missing, you’ll see a prompt similar to this:

grub>

You can access a GRUB 2 command line by pressing the c key when the menu is 
displayed. To see a list of available commands, press the tab key at the grub> prompt, or 
type the help command.

Command completion is also available. For example, if you don’t remember the name of 
the kernel file, type linux / and then press the tab key to review the available files in the  
/boot directory.

You should be able to find all detected hard drives on a standard PC from the BIOS/UEFI 
menus with the ls command. As an example, let’s find the /boot partition and grub.cfg file 
on this particular system. By default, the /boot directory is mounted on a separate partition. 
First, run ls at the grub> command line:

grub> ls 
(proc) (hd0) (hd0,msdos1) (hd0,msdos2)



254  Chapter 5  The Boot Process

The string hd0 denotes the first hard drive, whereas msdos1 is the first partition, created 
with the MBR format (msdos). If a server was partitioned using the newer GPT partition 
format, GRUB 2 would identify the first partition as gpt1 rather than msdos1. Similarly, 
hd0,msdos2 denotes the second partition on the first hard drive.

Next, use that information to find the grub.cfg file:

grub> ls (hd0,msdos1)/grub2/grub.cfg 
grub.cfg

If the file is not on the noted partition, you’ll see an “error: file '/grub2/grub.cfg' not 
found” error message. You may also see “error: unknown filesystem” if the noted partition 
does not contain a valid filesystem.

We know that the /boot directory is on (hd0,msdos1). To confirm the location of grub.cfg, 
run the following command:

grub> cat (hd0,msdos1)/grub2/grub.cfg

You should see the contents of the grub.cfg file in the output. Press a key to scroll 
through the content of the file until you are back to the GRUB 2 command line.

There’s one more way to identify the partition with the /boot directory. Run the  
search.file command to find grub.cfg:

grub> search.file /grub2/grub.cfg

GRUB 2 should return the partition with the /boot directory. In this case, it’s the first 
partition on the first hard drive:

hd0,msdos1

Now you can use these commands from the GRUB 2 configuration file to boot Linux 
from the grub> prompt. If the top-level root directory is normally mounted on a partition, 
you may even confirm the contents of the /etc/fstab file with a command like the following:

grub> cat (hd0,msdos2)/etc/fstab

If the root file system resides on an LVM volume, the preceding command would return 
an “error: unknown filesystem” message. To solve this problem, load the LVM module using 
the following command:

grub> insmod lvm

Now, the ls command should also include logical volumes in its output:

grub> ls 
(proc) (hd0) (hd0,msdos2) (hd0,msdos1) (lvm/rhel-root) (lvm/rhel-swap)

Finally, to print the content of /etc/fstab, run the following command:

grub> cat (lvm/rhel-root)/etc/fstab



Bootloaders and GRUB 2  255

EXERCISE 5-3

Using the GRUB 2 Command Line
In this exercise, you’ll boot RHEL 7 manually. Look at the contents of /etc/grub2.cfg and 
identify the desired commands in the stanza. Now follow these steps:

1.	 Boot the system. When you see the following line at the top of the screen, press any 
key to access the GRUB 2 menu:
The selected entry will be started automatically in 5s.

2.	 Press c for a GRUB-based command-line interface. You should see the grub> 
prompt.

3.	 Load the LVM module by typing the following command:
grub> insmod lvm

4.	 List all partitions and logical volumes:
grub> ls

5.	 Identify the root partition. This may be named something like (lvm/rhel-root). You 
may need to use some trial and error to find out (for example, by trying to display the 
/etc/fstab file from all the devices names previously listed by GRUB 2).
grub> cat (lvm/rhel-root)/etc/fstab

6.	 Set the root variable to the device that you have identified as that containing the root 
file system:
grub> set root=(lvm/rhel-root)

7.	 Enter the linux command, which specifies the kernel and root directory partition. 
Yes, this is a long line; however, you can use command completion (press the tab 
key) to make it faster. In addition, the only important parts of the line are the kernel 
file and the location of the top-level root directory.
linux (hd0,msdos1)/vmlinuz-3.10.0-123.el7.x86_64  
root=/dev/mapper/rhel-root

8.	 Enter the initrd command, which specifies the initial RAM disk command and file 
location. Again, you can use the tab key for filename completion.
initrd (hd0,msdos1)/initramfs-3.10.0-123.el7.x86_64.img

9.	 Now enter the boot command. If this command is successful, Linux should now 
boot the selected kernel and initial RAM disk just as if you selected that option from 
the GRUB 2 configuration menu.



256  Chapter 5  The Boot Process

Reinstall GRUB 2
In some situations, you may need to reinstall GRUB 2 from scratch. This may occur if 
grub2-mkconfig does not work, or if the configuration file that it generates contains  
errors due to a corrupt or incorrect script file. In this case, you need to reinstall the  
grub2-tools RPM package. Before proceeding with this operation, list and remove all  
GRUB 2 configuration and script files. This can be done using the following commands:

# rpm -qc grub2-tools 
/etc/default/grub 
/etc/grub.d/00_header 
/etc/grub.d/10_linux 
/etc/grub.d/20_linux_xen 
/etc/grub.d/20_ppc_terminfo 
/etc/grub.d/30_os-prober 
/etc/grub.d/40_custom 
/etc/grub.d/41_custom 
# rm -f /etc/default/grub 
# rm -f /etc/grub.d/*

Then, reinstall GRUB 2 by running the following command:

# yum reinstall grub2-tools

(You will find a full introduction to the rpm and yum commands in Chapter 7.)
Finally, regenerate the grub.cfg configuration file. On machines that run traditional BIOS 

firmware, the grub2-mkconfig command would look like this:

# grub2-mkconfig -o /boot/grub2/grub.cfg

Of course, if the GRUB 2 configuration file is missing and you weren’t able to boot the 
system to even display the GRUB 2 menu, you might need to resort to an option known as 
rescue mode.

An Option for Booting from GRUB 2: Rescue Mode
The troubleshooting objectives associated with a previous version of the RHCE exam prep 
guide suggested that you needed to be able to recover from a complete boot failure, such as 
if the GRUB 2 configuration file were corrupt or missing. In other words, if you’ve tried to 
boot directly from the grub> prompt described earlier and failed, you might need to resort 
to the option known as rescue mode. That requires access to the installation DVD or the 
network boot disk.



Bootloaders and GRUB 2  257

The RHCSA and RHCE 
objectives no longer include a requirement 
associated with rescue mode. However, 

because the rescue of unbootable systems 
is an important skill, it may be included in 
future versions of one of these exams.

To that end, boot from one of those media options. You should see the installation screen 
with the following options:

Install Red Hat Enterprise Linux 7.0 
Test this media & install Red Hat Enterprise Linux 7.0 
Troubleshooting

Select the Troubleshooting option and press enter. You will see a second screen with the 
following options:

Install Red Hat Enterprise Linux 7.0 in basic graphics mode 
Rescue a Red Hat Enterprise Linux system 
Run a memory test 
Boot from local drive 
Return to main menu

Select the Rescue a Red Hat Enterprise Linux system option and press enter. 
Rescue mode runs a stable minimal version of the RHEL 7 operating system on the local 
machine. It’s in essence a text-only version of the “Live DVD” media available on other 
Linux distributions such as Knoppix, Ubuntu, and, yes, even the Scientific Linux rebuild 
distribution.

For RHEL 7, it’s best to use RHEL 7 rescue media. Such media uses a kernel 
compiled by Red Hat, customized for supported software. Nevertheless, options 
such as Knoppix are excellent.

You can use the rescue environment to recover unbootable systems. If you’ve used rescue 
mode in RHEL 6, you should feel comfortable here. In most cases, the next step you see is 
shown in Figure 5-4.

The Continue option, as suggested in Figure 5-5, mounts all detected volumes as 
subdirectories of the /mnt/sysimage directory. The Read-Only option mounts detected 
volumes in read-only mode. The Skip option moves straight to a command-line interface. 
Select Continue. After confirmation, you’ll be presented with a shell prompt, as shown in 
Figure 5-6.



258  Chapter 5  The Boot Process

	 FIGURE 5-4	   Options for the rescue environment

	 FIGURE 5-5	   Mounting the root filesystem in the rescue environment



Between GRUB 2 and Login  259

From the shell prompt, enter the chroot /mnt/sysimage command. As the regular top-
level root directory for the system is mounted on the /mnt/sysimage directory, the chroot 
command changes the root directory, as if the /mnt/sysimage filesystem was mounted 
under /.

Do practice what you’ve learned about GRUB 2 in this section. It could help you recover 
from a real-world problem—and Red Hat does say that their exams are filled with “real-
world tasks.” However, don’t assume that you have access to a CD or a DVD during a Red 
Hat exam. If a rescue media is not available, that should mean that there’s at least one 
alternative method you can use to address the problem.

CERTIFICATION OBJECTIVE 5.03

Between GRUB 2 and Login
This section provides a basic overview of the boot process after the GRUB 2 bootloader 
finds the kernel. If you understand this process, you can diagnose a wide variety of 
boot problems. The messages associated with the kernel provide a step-by-step view of 
the process.

	 FIGURE 5-6	   Rescue environment shell



260  Chapter 5  The Boot Process

The loading of Linux depends on a temporary filesystem, known as the initial RAM disk. 
Once the boot process is complete, control is given to systemd, known as the first process. 
This section will describe the contents of systemd in detail, through the configuration of 
units and targets.

Most Linux distributions, including RHEL 7, have replaced Upstart and SysVinit 
with the new systemd service manager. 

In this section, you’ll also review the commands that allow you to reboot and shut down a 
system normally.

In systemd, the Unix philosophy that “everything is a file” can be paraphrased as 
“everything is a unit.” Units are the basic building blocks of systemd.

Kernels and the Initial RAM Disk
After you select a kernel from the GRUB 2 configuration menu, Linux hands over boot 
responsibilities to the kernel with the help of the initial RAM disk, also known by its 
filename in the /boot directory, initramfs. As suggested by its name, it is actually a filesystem.

During the boot process, Linux loads that temporary filesystem into your RAM. Linux 
then loads hardware drivers and starts the first process, systemd.

Next, systemd activates all the system units for the initrd.target and mounts the root 
filesystem under /sysroot. Finally, systemd restarts itself in the new root directory and 
activates all units for the default target (we will look in more detail at units and targets in the 
next section).

To learn more, disable the quiet directive for the desired kernel in the GRUB 
configuration file. Boot your system. Watch as the messages pass quickly through the 
screen. After logging in, you can review these messages in the /var/log/dmesg file or by 
running the dmesg command.

You can find more log information in the systemd journal. Display its contents with the 
journalctl command. What you see depends on the hardware and configuration of the local 
system. Key messages include the following:

■■ The version of the kernel.
■■ SELinux status, if active. By default, SELinux first starts in permissive mode, until the 

configured policy (enforcing) is loaded near the end of the boot process.
■■ The amount of recognized RAM (which does not necessarily match the actual 

amount of installed RAM).
■■ CPUs.
■■ Kernel command line, specifying the logical volume or root filesystem.



Between GRUB 2 and Login  261

■■ Freeing of memory associated with the initial RAM disk (initramfs).
■■ Hard drives and partitions (as defined by their device filenames, such as /dev/sda or  

/dev/vda1).
■■ Active filesystems.
■■ Swap partitions.

The log file is filled with excellent information. If the system is loading the wrong kernel, 
you’ll see evidence of that here. If Linux isn’t using a partition that you’ve configured, you’ll 
also see it here (indirectly). If SELinux isn’t loading properly, you’ll see it in messages toward 
the end of the file.

Remember that the Red 
Hat exams are not hardware exams. If you 
identify a problem with a key hardware 
component, such as a network card (which 

cannot be solved by some Linux command), 
inform your instructor/exam proctor. Don’t 
be surprised, however, if she responds that 
it’s not a hardware problem.

The First Process, Targets, and Units
The Linux kernel continues the boot process by calling the first process, systemd. In 
RHEL 7, the legacy init process is configured with a symbolic link to systemd.

Units are the basic building blocks of systemd. The most common are service units, 
which have a .service extension and activate a system service. To show a list of all service 
units, type the following command:

# systemctl list-units --type=service --all

The --all flag includes all units, not just the active ones. There are other types of units, 
such as mount and automount units, which manage mount points; path units, which activate 
a service when there is a change on a filesystem path (such as a spool directory); socket units, 
which start a service only when a client connection is made (if you have used the xinetd 
daemon, this is similar to how xinetd starts services on demand); and many, many more.

A special type of unit is a target unit, which is used to group together other system units 
and to transition the system into a different state. To list all target units, type the following 
command:

# systemctl list-units --type=target --all

The most important target units are described in Table 5-1.



262  Chapter 5  The Boot Process

In systemd, targets serve the same function as runlevels in previous RHEL distributions. 
In RHEL 6, seven runlevels, 0 through 6, were available. Linux services were organized by 
runlevel. Each runlevel was associated with a level of functionality.

For example, in runlevel 1, only one user was allowed to log in to that Linux system. 
X11 mode, also known as runlevel 5, was used to start Linux with a GUI login screen, if 
appropriate packages were installed. Table 5-2 compares systemd targets and the runlevels 
defined in RHEL 6.

Run the following command:

# ls -l /usr/lib/systemd/system/runlevel?.target

Note the symbolic links in the output. See how files such as runlevel0.target, runlevel1 
.target, and so on are linked to systemd targets such as poweroff.target and rescue.target. 
These links provide backward compatibility with the old SysV runlevels. You can even refer 
to graphical.target as runlevel5.target and multi-user.target as runlevel3.target.

Targets are controlled by units, organized in unit files. Although the default target is 
defined in /etc/systemd/system, you can override the default during the boot process from 
the GRUB 2 menu.

Target Unit Description

emergency.target Emergency shell; only the / filesystem is mounted in 
read-only mode.

graphical.target The default target for multiuser graphical systems.
multi-user.target Nongraphical multiuser system.
rescue.target Emergency shell; all filesystems are mounted.

	 TABLE 5-1	    
 
The systemd 
Target Units

	 TABLE 5-2	   RHEL 6 Runlevels and RHEL 7 systemd Targets

Runlevel systemd Target Description

0 poweroff.target Halt the system
1 rescue.target Single-user mode for 

maintenance and repair
2 multi-user.target Multiuser, without NFS
3 multi-user.target Full multiuser mode
4 multi-user.target Not used in RHEL 6
5 graphical.target X11 GUI with networking
6 reboot.taget Reboot the system



Between GRUB 2 and Login  263

Each target may be associated with several systemd units. Each unit can start or stop 
Linux services such as printing (cupsd), scheduling (crond), the Apache web server (httpd), 
the Samba file server (smbd), and more. When configured, the boot process starts and 
stops the systemd units of your choice. These units are known as dependencies. To list all 
dependencies of the default graphical.target unit, run the following command:

# systemctl list-dependencies graphical.target

The default target is specified as a symbolic link from the /etc/systemd/system/default.target 
file to either multi-user.target or graphical.target. You can also use the systemctl command 
to retrieve the current default target or to change the current settings, as shown here:

# systemctl get-default 
graphical.target 
# systemctl set-default multi-user.target 
rm '/etc/systemd/system/default.target' 
ln -s '/usr/lib/systemd/system/multi-user.target' 
'/etc/systemd/system/default.target'

As you can see from this output, the systemctl set-default multi-user.target command 
creates a symbolic link from /etc/systemd/system/default.target.

Switch Between Targets
Now that you’ve examined the different targets available on RHEL 7, it’s time to explore how 
to switch between targets. On earlier versions of RHEL, this is functionally equivalent to 
switching runlevels. First, establish the default target with the following command:

# systemctl get-default 
graphical.target

RHEL 7 normally boots to either graphical.target or multi-user.target. After logging in 
as the administrative user, you can move to a different target with the systemctl isolate 
command. For example, the following command moves the system to the multi-user target:

# systemctl isolate multi-user.target

After that command is complete, rerun the systemctl get-default command. The output 
confirms that the default target has not changed:

graphical.target

Now try something else. What do you think happens when the following command is 
executed?

# systemctl isolate poweroff.target



264  Chapter 5  The Boot Process

Reboot and Shut Down a System Normally
The commands required to reboot and shut down a system are straightforward. As just 
suggested in the previous section, the following commands provide one way to shut down 
and reboot a system, respectively:

# systemctl poweroff 
# systemctl reboot

For legacy purposes, Red Hat has created symbolic links from the following commands 
to systemctl. These commands work just as they did in earlier versions of RHEL.

# shutdown 
# reboot

systemd Replaces Upstart and SysVinit
The systemd process is the first process started at boot. It takes charge of activating all 
services. It replaces the traditional init daemon and the Upstart system, which is also a 
substitute for init and was the default init daemon on RHEL 6. The design and philosophy 
of Upstart are very similar to the old SysVinit system, which relies on init scripts to activate 
services, and on the concept of runlevels, which was introduced in the previous sections.

In contrast, systemd introduces a lot of new tools and can do much more, while 
maintaining compatibility with SysVinit. The design of systemd is based on optimal 
efficiency. First, at boot, systemd activates only the services that are strictly required, 
whereas others are started on demand. As an example, systemd starts the CUPS printing 
service only when a print job is sent to the /var/spool/cups queue. In addition, systemd 
parallelizes the initialization of services.

As a result, the boot process under systemd is faster. To display the time required to boot 
your system, run the following command:

# systemd-analyze time 
Startup finished in 506ms (kernel) + 1.144s 
(initrd) + 6.441s (userspace) = 8.092s.

This output shows the time required to initialize the kernel, plus the time to load the 
initial RAM disk (initrd) and the time to activate systemd units (userspace). The total time 
is 8.092 seconds. But there’s more. You can display a detailed account of the time required 
to activate each systemd unit by running systemd-analyze blame. An example is shown in 
Figure 5-7.

The numbers in Figure 5-7 don’t equal the total userspace time reported by systemd-
analyze time. That happens because systemd starts multiple services simultaneously.



Between GRUB 2 and Login  265

But there’s even more. Although an in-depth knowledge of all the features of systemd 
is outside of the scope of the RHCSA exam, systems administrators can take advantage of 
some of its capabilities.

Some Linux developers have argued that systemd does too much and breaks the Unix 
philosophy of writing programs that “do one thing and do it well.” However, as of today, 
systemd has been adopted by most of the major Linux distributions.

Logging
The systemd process includes a powerful logging system. You can display all collected logs 
with the journalctl command. By default, the journal log files are temporarily stored in 
RAM in a ring buffer in the /run/log/journal directory. To get Linux to write journal log files 
persistently on disk, run the following commands:

# mkdir /var/log/journal 
# chgrp systemd-journal /var/log/journal 
# chmod 2775 /var/log/journal 
# systemctl restart systemd-journald.service

Once persistent logging is enabled, you can show log messages from a specific boot with 
the -b switch: journalctl -b 0 displays the log messages since the last boot, journalctl -b 1 
from the boot before the last one, and so on. You don’t have to switch through different 
log files because journactl automatically aggregates available data from the current and all 
rotated log files.

	 FIGURE 5-7	    
 
Initialization time 
of systemd units



266  Chapter 5  The Boot Process

You can also filter log messages based on their priority using the -p command option. As 
an example, journalctl -p warning displays all messages with a priority level of “warning” 
or higher. Log messages of a “warning” priority level are displayed in a bold font character, 
whereas messages with priority levels of “err” and higher are shown in red.

cgroups
Control groups (or cgroups) are a feature of the Linux kernel to group processes together 
and control or limit their resource usage (such as CPU, memory, and so on). In systemd, 
cgroups are primarily used to track processes and to ensure that all processes that belong to 
a service are terminated when a service is stopped.

Under the traditional SysVinit system, it is difficult to identify the service associated with 
a process. In fact, services often start multiple processes. When you stop a SysVinit service, 
that service may not be able to terminate all dependent (child) processes. You’re stuck 
with either stopping all dependent processes manually (with the ps and kill commands) or 
accepting a system with orphaned processes in an unknown state until the next reboot.

To address this limitation, systemd labels processes associated with a service using 
cgroups. In this way, systemd uses cgroups to kill all processes in a group, if required.

The command systemd-cgls displays the cgroup hierarchy in a tree format, as shown in 
Figure 5-8. From the excerpt in Figure 5-8, you can identify cgroups such as rsyslog.service 
and avahi-daemon.service, along with the processes they have spawned. Note the one-to-
one correspondence between cgroups and systemd service units.

	 FIGURE 5-8	    
 
The cgroup 
hierarchy



Between GRUB 2 and Login  267

Dependencies
The traditional SysVinit system starts services sequentially. In contrast, systemd can  
activate services in parallel by keeping track of all dependencies between units. The 
systemctl list-dependencies command displays a tree with all dependencies between units. 
An excerpt of the output is shown in Figure 5-9.

You can show the dependencies for any available unit. Dependent units must be started 
first. For example, the following command shows the units that must be started before the 
rsyslog service:

# systemctl list-dependencies rsyslog.service

systemd Units
The first process is systemd. The systemd process uses various configuration files to start 
other processes. You can find these configuration files in the following directories:  
/etc/systemd/system and /usr/lib/systemd/system.

The default configuration files are stored in /usr/lib/systemd/system. Custom files, stored 
in /etc/systemd/system, supersede these files. Don’t change files in the /usr/lib/systemd 
/system directory. Any software updates may overwrite those files.

We have already discussed service and target units, but there are more. Table 5-3 gives a 
brief description of all available unit types.

Examine the contents of the /usr/lib/systemd/system directory. Each file contains the 
configuration of a systemd unit whose type matches the filename extension. As an example, 
the file graphical.target defines the configuration for the graphical login target unit, whereas 
the file rsyslog.service includes the configuration for the rsyslog service unit.

	 FIGURE 5-9	    
 
Dependencies 
between systemd 
units



268  Chapter 5  The Boot Process

You can list all active systemd units using the following command:

# systemctl list-units

The list-units keyword is optional because it is the default. If you want to include 
inactive, maintenance, and failed units, add the --all command switch. An excerpt of the 
output of the command is shown in Figure 5-10.

In the output, the first column lists the unit name, and the second column tells whether 
or not the unit was properly loaded. The third column displays the state of the unit: active, 
inactive, failed, or maintenance. The next column includes more detail. Finally, the last 
column shows a brief description of the unit.

Whereas the systemctl list-units command gives a run-time snapshot of the state of 
each unit, the following command shows whether a unit is enabled or disabled at startup:

# systemctl list-unit-files

An example of the output is shown in Figure 5-11. As you can see, units can be “enabled” 
or “disabled.” There is also another state, named “static,” which means that a unit is enabled 
and it cannot be manually disabled.

Unit Type Description

Target A group of units. It is used as a synchronization point at startup 
to define a set of units to be activated.

Service A service, such as a daemon like the Apache web server.
Socket An IPC or network socket, used to activate a service when traffic 

is received on a listening socket (similar to the activation of 
services on demand performed by the xinetd daemon).

Device A device unit, such as a drive or partition.
Mount A filesystem mount point controlled by systemd.
Automount A filesystem automount point controlled by systemd.
Swap A swap partition to be activated by systemd.
Path A path monitored by systemd, used to activate a service when 

the path changes.
Timer A timer controlled by systemd, used to activate a service when 

the timer elapses.
Snapshot Used to create a snapshot of the systemd run-time state.
Slice A group of system resources (such as CPU, memory, and so on) 

that can be assigned to a unit via the cgroup interface.
Scope A unit for organizing and managing resource utilization of a set 

of system processes.

	 TABLE 5-3	    
 
The systemd  
Unit Types



Between GRUB 2 and Login  269

	 FIGURE 5-10	   systemd units

	 FIGURE 5-11	    
 
Installed unit files



270  Chapter 5  The Boot Process

Virtual Terminals and Login Screens
The login terminals in Linux are virtual terminals. Most Linux systems, including RHEL 7, 
are configured with six standard command-line virtual terminals. These consoles are 
numbered from 1 to 6. When configured with a GUI and a login manager, RHEL 7 
substitutes the graphical login screen for the first virtual terminal.

What does that all mean? In Linux, you can switch between virtual terminals with an  
alt-function key combination. For example, alt-f2 brings you to the second virtual 
terminal. You can switch between adjacent virtual terminals by pressing alt-right arrow 
or alt-left arrow. For example, to move from virtual terminal 2 to virtual terminal 3,  
press alt-right arrow. If you’re in a GUI virtual terminal, add the ctrl key. So in RHEL 7,  
if the GUI is installed and you’re in the first virtual terminal, you’d press ctrl-alt-f2 to get 
to the second virtual terminal.

When you log in to a regular virtual terminal, Linux returns a command-line shell. The 
default shell for a user is defined in the /etc/passwd file described in Chapter 6. When 
you log in to a GUI virtual terminal, Linux returns the configured GUI desktop. For more 
information on the Linux GUI, see Chapter 8.

Through RHEL 6, virtual terminals were configured in files in /etc/sysconfig/init and 
the /etc/init directory. Now that systemd has replaced Upstart, they are defined by the 
logind.conf file in the /etc/systemd directory.

Virtual terminals bring the multiuser capabilities of Linux to life. At work (or during 
a Red Hat exam), you might review a man page on one terminal, compile a program in 
another, and edit a configuration file in a third virtual terminal. Other users who are 
connected can do the same thing at the same time.

CERTIFICATION OBJECTIVE 5.04

Control by Target
With systemd, Red Hat Enterprise Linux service management is customized by target. Since 
systemd includes links to runlevels for backward compatibility with SysVinit, you can still 
refer to the runlevels listed in Table 5-2 with commands such as init and telinit. However, 
you should get familiar with targets because this is the standard method of activating 
services at boot.

Linux is highly customizable. Therefore, it makes sense that the systemd units that start 
in each target can be customized. Although GUI tools are available to customize systemd 
units, configuring them from the command-line interface is generally a lot faster.



Control by Target  271

Functionality by Target
As described earlier, the basic functionality of each target is listed in the configuration files 
in the directories /etc/systemd/systemd and /usr/lib/systemd/system. For example, let’s start 
with the default target, which in a RHEL 7 system with graphical login is

# systemctl get-default 
graphical.target

The system knows that graphical.target is the default thanks to a symbolic link from the  
/etc/systemd/system/default.target file to the graphical.target file in /usr/lib/system/system. 
Take a look at one of those files. An excerpt is shown here:

[Unit] 
Description=Graphical Interface 
Documentation=man:systemd.special(7) 
Requires=multi-user.target 
After=multi-user.target 
Conflicts=rescue.target 
Wants=display-manager.service 
AllowIsolate=yes

This means that a target can include another target. In this case, graphical.target is 
a superset of multi-user.target. After all systemd units in multi-user.target have started, 
graphical.target activates display-manager.service, as indicated by the Wants directive in the 
graphical.target configuration file.

Other services started by graphical.target may be listed in the graphical.target.wants 
subdirectory in /etc/systemd/system or /usr/lib/systemd/system. In a default RHEL 7 
installation, we see the following files:

# ls /etc/systemd/system/graphical.target.wants 
accounts-daemon.service rtkit-daemon.service

These are symbolic links to the unit configuration files of the Accounts and RealtimeKit 
services.

The Innards of systemd Units
The systemd units are activated whenever a system moves to a different target. Therefore, 
the units associated with the default target are executed during the boot process. 
Appropriate units are also started when you change targets; for example, when you run the 
systemctl isolate multi-user.target command from the graphical.target, Linux stops all 
service units that were started by the graphical target.

But you can control systemd units directly. For example, examine the content of the file 
rsyslog.service from the /usr/lib/systemd/system directory, as shown in Figure 5-12.



272  Chapter 5  The Boot Process

The configuration starts with the Unit section, which contains a description of the 
service. Then comes the service configuration, which includes the type of the service, a 
pointer to a file with some environment variables that configure the service behavior, the 
main executable to run to activate the service, and a directive that sends all standard output 
from the service to /dev/null.

Finally, the WantedBy directive tells us that this service will be activated at boot when the 
system enters into the multi-user target.

Now, run the following command:

# systemctl status rsyslog.service

If you specify a unit name without an extension, by default systemd assumes that it is a 
service unit. Hence, a short version of the previous command is

# systemctl status rsyslog

This command should return an output similar to that shown in Figure 5-13, including 
the status of the service unit, its main process ID, and up to the 10 most recent log lines. If 
some of the log lines are truncated, use the -l switch to display them in full.

You can stop a service by running a command such as this:

# systemctl stop rsyslog.service

	 FIGURE 5-12	    
 
The configuration 
file of the rsyslog 
service unit

	 FIGURE 5-13	    
 
Displaying the 
status of a service



Control by Target  273

Alternatively, the systemctl command can be used with the options shown in Table 5-4; 
for example, the following command reloads the SSH configuration file without stopping or 
starting the service:

# systemctl reload sshd.service

Service Configuration
The systemctl command gives you a simple way to enable a service for the default target. 
First, try the following command:

# systemctl list-unit-files --type=service

This gives an output similar to Figure 5-11, but limited to service units. You’ll see the 
whole list of installed services in the system, along with their activation status at boot.

The systemctl command can do more. With that command, you can change the boot 
state of a particular service. For example, the following command checks if the Postfix 
service is configured to start at boot:

# systemctl list-unit-files | grep postfix.service 
postfix.service                              enabled

An equivalent command is

# systemctl is-enabled postfix.service 
enabled

Command Description

start Starts the service if it’s currently not running.
stop Stops the service if it’s currently running.
restart Stops and then starts the service.
reload If supported, it loads the current version of the configuration 

file(s). The service is not stopped, and clients that have 
previously connected are not kicked off.

try-restart Stops and then restarts the service only if it is already running.
condrestart Same as try-restart.
status Lists the current operational status of the service.

	 TABLE 5-4	    
 
systemctl Service  
Control Commands



274  Chapter 5  The Boot Process

This indicates that the Postfix e-mail server is configured to start in the default target. 
If you want to make sure the Postfix service does not start in the default target, execute the 
following command:

# systemctl disable postfix.service

Run the systemctl list-unit-files command again to confirm the change. To turn it back on 
for the default target, run the same command, substituting enable for disable, as shown here:

# systemctl enable postfix.service

When you enable a service, the systemctl enable command creates a symbolic link in the 
directory /etc/systemd/system/multi-user.target.wants that points to the corresponding unit 
configuration file in /usr/lib/systemd/system. If you wish, you can enable or disable services 
manually by creating symbolic links in the appropriate systemd directories. However, using 
systemctl is the preferred way because it is less error-prone.

When a service is disabled, you can still start and stop it manually via the systemctl start 
and stop commands. This means that the systemctl disable command does not prevent a user 
from accidentally starting a service by mistake. If you want to disable a service unit at boot and 
ensure that it cannot be started anymore, you should use the mask command, as illustrated here:

# systemctl mask postfix.service 
ln -s '/dev/null' '/etc/systemd/system/postfix.service'

As shown, this command creates a symbolic link in /etc/systemd/system named postfix 
.service, which points to /dev/null. A configuration file in /etc/systemd/system always takes 
precedence over a corresponding file in /usr/lib/systemd/system. Hence, the result is that 
the default postfix.service file in /usr/lib/systemd/system is “masked” by the symbolic link in 
/etc/systemd/system to /dev/null.

CERTIFICATION OBJECTIVE 5.05

Time Synchronization
The configuration of a Network Time Protocol (NTP) client is straightforward. Therefore, this 
section provides an overview of the configuration files and the associated command tools.

There are good reasons to keep different systems running on the same clock. For 
example, a web server and a client logging in different times would make troubleshooting 
extremely difficult. Several services rely on accurate timestamps. As an example, a time drift 
of more than five minutes would cause a Kerberos client to fail authentication.



Time Synchronization  275

RHEL 7 includes RPMs for two NTP daemons: ntpd and chronyd. Don’t install both. 
Typically, ntpd is recommended for systems that are always connected to the network, such 
as servers, whereas chronyd is the preferred choice for virtual and mobile systems. We will 
describe the configuration of the default time synchronization service, chronyd. But first, we 
will explain how to configure the time zone.

Time Zone Configuration
Every system, real or virtual, starts with a hardware clock. The time on that clock may 
depend on the power in a battery; over time, batteries lose power, and many hardware 
clocks end up losing time. The installation process on RHEL 7 normally sets the hardware 
clock to local time, rather than UTC. However, UTC (which is essentially identical to 
Greenwich Mean Time, or GMT) is usually the best setting for servers to avoid issues when 
switching to daylight saving time.

Every RHEL 7 system includes a time zone configured in the /etc/localtime file. This 
is a symbolic link that points to one of the time zones files in /usr/share/zoneinfo. As an 
example, /etc/localtime should point to /usr/share/zoneinfo/America/Los_Angeles if you 
are based in California.

Rather than manually setting a symbolic link to a time zone file, you can use the 
timedatectl utility. If you run the command alone with no arguments, it will show a 
summary of the current time settings, including the current time, time zone, and NTP 
status. Some sample output is shown in Figure 5-14.

You can display a list of the available time zones by running the following command:

# timedatectl list-timezones

Then, to switch to a different time zone, run timedatectl with the set-timezone 
command. Here’s an example:

# timedatectl set-timezone America/Los_Angeles

	 FIGURE 5-14	    
 
Date and time 
settings



276  Chapter 5  The Boot Process

Sync the Time with chronyd
The default chronyd configuration file, /etc/chrony.conf, is set up to connect to multiple 
public servers from the NTP pool project. When used collectively, the chronyd daemon 
minimizes time errors.

server 0.rhel.pool.ntp.org iburst 
server 1.rhel.pool.ntp.org iburst 
server 2.rhel.pool.ntp.org iburst 
server 3.rhel.pool.ntp.org iburst

Users of rebuild distributions such as CentOS will see different hostnames, such as 0.centos 
.pool.ntp.org. The iburst configuration option shown here speeds the initial synchronization 
when the chronyd service is started.

To configure chronyd to synchronize with a different NTP server, just modify the server 
directives in /etc/chrony.conf and restart chronyd:

# systemctl restart chrnoyd

You can display information about the current time sources using the chronyc sources -v 
command. An example is shown in Figure 5-15.

Sync the Time with ntpd
A basic configuration of the ntpd daemon is straightforward. First, you should ensure that 
chronyd is stopped and disabled at boot because you cannot have both chronyd and ntpd 
running on the same machine:

# systemctl stop chronyd.service 
# systemctl disable chronyd.service

	 FIGURE 5-15	    
 
NTP server 
statistics



Time Synchronization  277

Then, install the ntp RPM package:

# yum install ntp

The default ntpd configuration file is /etc/ntp.conf. It is similar to the /etc/chronyd.conf 
file and contains four server directives, pointing to public servers that are part of the NTP 
pool project. You can customize the configuration or run ntpd with the default settings. 
Once you have made your changes to the file, start and enable ntpd:

# systemctl start ntpd.service 
# systemctl enable ntpd.service

To display information about the NTP sources, run the ntpq -p command.

CERTIFICATION SUMMARY
This chapter covered the basic boot process of a RHEL system. It starts with the hardware 
POST and continues with the BIOS or UEFI system. Once boot media is found, the process 
moves to the first stage of the GRUB 2 bootloader. The GRUB 2 menu allows you to select 
and customize the kernel to be booted.

Once you’ve selected an option, GRUB 2 hands control to the kernel. The kernel loads a 
temporary filesystem known as the initial RAM disk. Once essential drivers and filesystems 
are loaded, you can review the systemd journal with the journalctl command. Then the 
kernel executes the first process, also known as systemd.

Linux services are controlled by systemd targets, which group together other systemd 
units. The default target is configured as a symbolic link in the directory /etc/systemd 
/system, and the unit configuration files are stored in this directory and in /usr/lib/systemd 
/system. The status of those systemd units can be configured and queried using the 
systemctl command. The systemd targets are linked to other targets and to unit 
configuration files. systemctl can also be used to start, stop, restart, reload systemd units, 
and more.

You may need to set up local systems as NTP clients. The default NTP service in RHEL 7 
is chronyd.



278  Chapter 5  The Boot Process

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 5.

The BIOS and the UEFI
❑❑ Although not strictly a part of the exam, it’s important to know the basics of the 

BIOS and the UEFI.
❑❑ You can change the boot sequence from the BIOS/UEFI menu.
❑❑ Once the BIOS/UEFI detects the designated boot drive(s), it hands control to 

GRUB 2 via the Master Boot Record (MBR) or GUID Partition Table (GPT) of the 
appropriate drive.

Bootloaders and GRUB 2
❑❑ RHEL 7 uses GRUB 2.
❑❑ The GRUB 2 configuration file is organized into sections.
❑❑ From the GRUB 2 menu, you can boot into a systemd target other than the default.
❑❑ You can even boot from a GRUB 2 menu into a rescue shell that provides root 

administrative access without an account password.
❑❑ The GRUB 2 configuration file specifies a kernel, a root directory volume, and an 

initial RAM disk for each operating system.
❑❑ If the GRUB 2 configuration file is missing, you may be able to boot from the grub> 

prompt with information on the /boot directory partition, the Linux kernel file, the 
top-level root directory, and the initial RAM disk file.

Between GRUB 2 and Login
❑❑ You can analyze boot messages through the journalctl command.
❑❑ Default system targets are configured as a symbolic link from the /etc/systemd 

/system directory.
❑❑ The systemd process has replaced Upstart and SysVinit as the first process. It 

has configuration files in the /etc/systemd/system and /usr/lib/systemd/system 
directories.

❑❑ Once the kernel boots, it hands control to systemd, also known as the first process.

Control by Target
❑❑ The default target configured in /etc/systemd/system activates systemd units in the  

/usr/lib/systemd/system directory.
❑❑ Target units can include other targets and units to be activated.



Self Test  279

❑❑ You can use systemctl to control a service with the start, stop, restart, reload, and 
other commands.

❑❑ The services that start in each target can also be controlled with systemctl and the 
enable/disable commands.

Time Synchronization
❑❑ The timedatectl tool can be used to check the current time, date, time zone, and 

NTP service status.
❑❑ The default NTP service in RHEL 7 is chronyd. It keeps time in sync with servers 

configured in the /etc/chrony.conf file.
❑❑ An alternative to chronyd is ntpd, which keeps its configuration settings in the  

/etc/ntp.conf file.
❑❑ Do not run both chronyd and ntpd at the same time.

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter. 
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear 
in this book. These questions exclusively test your understanding of the chapter. It is okay if you have 
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat 
exams. There may be more than one answer for many of these questions.

The BIOS and the UEFI

1.	 On what part of the boot hard drive is the first stage of the GRUB 2 bootloader typically located?
_____________________________________________________

Bootloaders and GRUB 2

2.	 When you see the GRUB 2 configuration menu, what command would you use to modify the 
configuration?
_____________________________________________________



280  Chapter 5  The Boot Process

3.	 What string would you add to the linux16 command line to boot into the emergency target?
_____________________________________________________

4.	 If you see the set root='hd0,msdos1' directive in the GRUB 2 configuration file, on what partition 
is the /boot directory? Assume the GRUB 2 configuration file is properly configured.
_____________________________________________________

Between GRUB 2 and Login

5.	 What temporary file system is loaded directly from the GRUB 2 menu?
_____________________________________________________

6.	 What one-word command can you use to read systemd log messages?
_____________________________________________________

7.	 In what directories can you find the configuration files associated with the first process?
_____________________________________________________

8.	 How do you switch from the graphical target to the multi-user target?
_____________________________________________________

Control by Target

9.	 What command lists the default target?
_____________________________________________________

10.	 Name three commands that can be typically run from systemctl to control the status of 
systemd units.
_____________________________________________________
_____________________________________________________
_____________________________________________________

11.	 What command lists the state of all systemd units currently available on the local system, 
including those that are not active?
_____________________________________________________



Self Test Answers  281

Time Synchronization

12.	 What command lists the current time, time zone, and status of the NTP service?
_____________________________________________________

13.	 Which configuration file is used by chronyd?
_____________________________________________________

LAB QUESTIONS
Several of these labs involve installation exercises. You should do these exercises on test machines only. 
The second lab of Chapter 1 sets up KVM for this purpose.

Red Hat presents its exams electronically. For that reason, the labs in this and future chapters are 
available from the media that accompanies the book. Look in the Chapter5/ subdirectory for this 
chapter’s labs. They’re available in .doc, .html, and .txt formats. In case you haven’t yet set up RHEL 7  
on a system, refer to the first lab of Chapter 2 for installation instructions. The answers for each lab 
follow the Self Test answers for the fill-in-the-blank questions.

SELF TEST ANSWERS

The BIOS and the UEFI

1.	 For the BIOS/UEFI to hand control over to Linux, it needs to identify the Master Boot Record 
(MBR) or the GUID Partition Table (GPT) of the boot hard drive.

Bootloaders and GRUB 2

2.	 From the GRUB 2 menu, the command that modifies the configuration is e.
3.	 To boot into the emergency target from the GRUB 2 linux16 command line, you’d append the 

string systemd.unit=emergency.target.



282  Chapter 5  The Boot Process

4.	 The set root='hd0,msdos1' directive documents the /boot directory on the first partition on the 
first hard drive.

Between GRUB 2 and Login

5.	 The temporary filesystem loaded from the GRUB 2 menu is the initial RAM disk filesystem, also 
known by its filename, initramfs.

6.	 The one-word command that you can use to read systemd log messages is journalctl.
7.	 The configuration files associated with the first process are located in the /etc/systemd/system 

and /usr/lib/systemd/system directories.
8.	 The command to switch from the graphical target to the multi-user target is systemctl isolate 

multi-user.target.

Control by Target

9.	 The command that lists the default target is systemctl get-default.
10.	 Typical commands that can be run from systemctl include start, stop, restart, reload, enable, 

disable, and more.
11.	 The systemctl list-units --all command (or just systemctl --all) lists the state of all units, 

including inactive ones.

Time Synchronization

12.	 The timedatectl command lists the current time, time zone, and the status of the NTP service.
13.	 The chronyd configuration file is /etc/chrony.conf.

LAB ANSWERS
Yes, there are many Linux systems that run for years at a time without a reboot. But reboots are 
sometimes required, such as when newer kernels are installed. So when configuring a Linux system, 
make sure any changes survive a reboot. On a Red Hat exam, you won’t get credit unless your changes 
survive a reboot.

Lab 1
If successful, this lab will show you how to change the default target, along with the relative importance 
of the options in the GRUB bootloader. Remember, you can modify the default target via the systemctl 
command



Lab Answers  283

# systemctl set-default multi-user.target

or manually by modifying the /etc/systemd/system/default.target symbolic link:

# rm -f /etc/systemd/system/default.target 
# ln -s /usr/lib/systemd/system/multi-user.target   
/etc/systemd/system/default.target

Lab 2
This lab is the same as Exercise 5-2. Practice with the root password recovery procedure until you are 
familiar with all the steps and you don’t need to rely on the documentation. Remember, Red Hat exams 
are “closed book.”

Lab 3
After completing this lab, you should have modified the variables GRUB_TIMEOUT and  
GRUB_CMDLINE_LINUX in /etc/default/grub, as shown here:

GRUB_TIMEOUT=10 
GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root vconsole.font 
=latarcyrheb-sun16 rd.lvm.lv=rhel/swap crashkernel 
=auto  vconsole.keymap=uk rhgb"

Note that the “quiet” keyword has been removed from GRUB_CMDLINE_LINUX, to enable verbose 
messages at boot.

Then, run the grub2-mkconfig command to generate a new GRUB configuration file:

# grub2-mkconfig -o /boot/grub2/grub.cfg

To really test the result, reboot the system. What happens? Finally, revert back your changes.

Lab 4
The script executed in this lab moved the grub.cfg configuration file to the /root/backup directory. If 
you understand GRUB 2 well, you should have been able to boot the system from the grub> prompt.

Otherwise, you can recover the grub.cfg file by booting into the rescue target described in this 
chapter. From the rescue mode command-line prompt, you should be able to restore the original 
configuration with the following commands:

# chroot /mnt/sysimage 
# cp /root/backup/grub.cfg /boot/grub2/

Alternatively, generate a new grub.cfg configuration file with the grub2-mkconfig command.



284  Chapter 5  The Boot Process

Lab 5
It’s possible to configure up to 12 virtual terminals, which match the number of function keys available 
on most keyboards. If you want to set up 12 virtual terminals (and that would be an interesting problem 
for the RHCSA exam), look at the /etc/securetty file and related man pages with the man -k securetty 
command. One way to accomplish the tasks in this lab is with the following steps:

1.	 Open the /etc/systemd/logind.conf file. Change the following directive to limit the active consoles 
to terminals 1 and 2:

NAutoVTs=2

2.	 To test the result, reboot the system.
3.	 What happens? Can you still log in to terminals 3, 4, 5, and 6?
4.	 When complete, just remember to restore the original version of the /etc/systemd/logind.conf file.


	_GoBack

