
Chapter 14
The Apache Web Server

14.01	 The Apache Web Server

14.02	 Standard Apache Security Configuration

14.03	 Specialized Apache Directories

14.04	 Regular and Secure Virtual Hosts

14.05	 Deploy a Basic CGI Application

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

Unix was developed by AT&T in the late 1960s and early 1970s, and it was freely distributed
among a number of major universities during those years. When AT&T started charging
for Unix, a number of university developers tried to create clones of this operating

system. One of these clones, Linux, was developed and released in the early 1990s.

Many of these same universities were also developing the network that evolved into the
Internet. With current refinements, this makes Linux perhaps the most Internet-friendly
network operating system available. The extensive network services available with Linux are

680  Chapter 14  The Apache Web Server

not only the tops in their field, but they create one of the most powerful and useful Internet-
ready platforms available today at any price.

Currently, Apache is the most popular web server on the Internet. According to a Netcraft
survey (http://www.netcraft.com), Apache is currently used by nearly 50 percent of all Internet
active websites. Apache is included with RHEL 7.

This chapter deals with the concepts surrounding the use the Apache web server at a basic
level of configuration.

INSIDE THE EXAM

Inside the Exam
This chapter directly addresses five RHCE
objectives. While the objectives specify the
HTTP (Hypertext Transfer Protocol) and
HTTPS (HTTP, secure) protocols, that is an
implicit reference to the Apache web server.
It’s the only web server currently supported on
RHEL 7. The objectives are to

■■ Configure a virtual host

Virtual hosts are the bread and butter of
Apache. They support the configuration of
multiple websites on the same server.

■■ Configure private directories

Private directories on an Apache web server
restrict access to a group of users or hosts.

■■ Configure group-managed content

Sometimes groups of users have to maintain
the content of a website jointly. As private direc-
tories can be configured for individual users in
their home directories, directories can be config-
ured for groups of users in a shared directory.

■■ Deploy a basic CGI application

Don’t worry if you don’t know the Common
Gateway Interface (CGI), but dynamic content
on web pages often depends on scripts such as
those associated with CGI.

■■ Configure TLS security

We have already encountered TLS in the
previous chapters. TLS (and its predecessor,
SSL) is a suite of protocols used to encrypt
network communications. It was originally
developed in the mid-1990s to provide
certificate-based authentication and secure
communications for the Netscape Naviga-
tor web browser. Therefore, it’s no surprise
that today TLS still plays an important role
in securing communications on an Apache
web server.

In addition, there are the standard require-
ments for all network services, discussed in
Chapters 10 and 11. To summarize, you need to
install the service, make it work with SELinux,
make sure it starts on boot, configure the service
for basic operation, and set up user- and host-
based security.

INSIDE THE EXAM

The Apache Web Server  681

CERTIFICATION OBJECTIVE 14.01

The Apache Web Server
Based on the HTTP daemon (httpd), Apache provides simple and secure access to all types
of content using the regular HTTP protocol, as well as its secure cousin, HTTPS.

Apache was developed from the server code created by the National Center for
Supercomputing Applications (NCSA). It included so many patches that it became known
as “a patchy” server. The Apache web server continues to advance the art of the Web and
provides one of the most stable, secure, robust, and reliable web servers available. This server
is under constant development by the Apache Software Foundation (http://www.apache.org).

For a full copy of Apache documentation, make sure to include the httpd-manual RPM
during the installation process. It’ll provide a full HTML copy of the Apache manual in the
/usr/share/httpd/manual directory, which can be navigated from the local server by pointing
a browser to http://localhost/manual.

Apache 2.4
As befits its reliability and stability, RHEL 7 includes an updated version of Apache 2.4.
RHEL 6 included an older version of Apache 2.2. However, Apache 2.4 included with
RHEL 7 has all the updates needed to support the latest features, with the best possible
security from the risks associated with the Internet.

The LAMP Stack
One of the powers of Apache as a web server is the way it can be easily integrated with other
software components. The most common set is known as the LAMP stack, which refers to
its components: Linux, Apache, MySQL, and one of three scripting languages (Perl, Python,
or PHP).

In the RHCE objectives for RHEL 7, you are expected to install MariaDB, a community-
developed fork of the MySQL database management system. We will discuss the installation
and configuration of MariaDB in Chapter 17.

Installation
The RPM packages required by Apache are included in the Web Server package group. The
simplest way to install Apache is with the following command:

yum install httpd

682  Chapter 14  The Apache Web Server

However, additional packages are required. It may be simpler to install the mandatory and
default packages associated with the Web Server package group with the following command:

yum group install "Web Server"

There is also an environment group, named Basic Web Server, that installs the Web
server group by default, but also includes some optional groups, such as a MariaDB and
PostgreSQL client, Perl and PHP extensions, Java, and so on. If you don’t remember the
names of available groups, run the yum group list command.

The standard method to start Linux services is via the systemctl utility. However, you
can stop and start Apache, as well as reload the configuration file gracefully, with the
following commands:

apachectl stop
apachectl start
apachectl graceful

The default Red Hat Apache package supports basic operation, without additional
configuration. Once Apache is running, start a web browser and enter a URL of http://
localhost. For example, Figure 14-1 displays the default home page for Apache, based on the
default configuration, in the elinks web browser.

	 FIGURE 14-1	  

Default installed
Apache home
page

The Apache Web Server  683

The web page is based on the contents of the /etc/httpd/conf.d/welcome.conf file, which
displays the /usr/share/httpd/noindex/index.html file if there is no index.html file for the
default website.

EXERCISE 14-1

Install the Apache Server
In this exercise, you’ll install all the packages generally associated with the Apache server.
Then you’ll configure the system so Apache is active the next time Linux is booted. The
twist here is that you’ll do it all from the command-line interface. This assumes you’ve
already taken the steps discussed in Chapter 7 to either register with the Red Hat Portal or
connect the system to the RHEL 7 (or rebuild DVD) media as a repository.

1.	 If you’re in the GUI, open a command-line console. Press alt-f2 and log in as the
root user.

2.	 Run the following command to review available groups. You should see “Basic Web
Server” in the list of available environment groups.

yum group info

3.	 Check which groups are included within the “Basic Web Server” environment group.
You should see web-server in the list of mandatory groups.

yum group info "Basic Web Server"

4.	 Display the packages included in the web-server group with the following command:

yum group info web-server

5.	 You can install all default packages in the web-server package group with the
following command:

yum group install web-server

	 If you just install the httpd RPM package, other important packages may not get
installed, including mod_ssl, for the secure websites cited in the RHCE objectives.

6.	 Run the following command to see if Apache is already configured to start at boot:

systemctl is-enabled httpd

7.	 Now use the following command to make sure Apache starts in the default target the
next time Linux boots normally:

systemctl enable httpd

8.	 Start the Apache service with the following command:

systemctl start httpd

684  Chapter 14  The Apache Web Server

9.	 If you haven’t already done so in Chapter 2, install a text-based web browser. The
RHEL 7 standard is elinks, which you can install with the following command:

yum install elinks

10.	 Now start the ELinks browser, pointing to the local system, with the following
command:

elinks http://localhost

11.	 Review the result. Do you see the Apache test page?
12.	 Exit from the ELinks browser. Press q, and when the Exit ELinks text menu appears,

press y.
13.	 Back up the default httpd.conf configuration file; a logical location is your home

directory.
14.	 Run the rpm -q httpd-manual command to confirm the installation of Apache

documentation. Since that package is a default part of the Web Server package
group, you shouldn’t get a package “not installed” message. However, if you do get
that message, install that package with the yum install httpd-manual command.

15.	 Browse the documentation by pointing the ELinks browser to the following URL:

elinks http://localhost/manual

The Apache Configuration Files
The two key configuration files for the Apache web server are httpd.conf in the /etc/httpd/conf
directory and ssl.conf in the /etc/httpd/conf.d directory. The default versions of these files
create a generic web server service. All the configuration files are located in three directories:
/etc/httpd/conf, /etc/httpd/conf.d, and /etc/httpd/conf.modules.d. They’re illustrated in
Figure 14-2.

Apache can work with a lot of other software, such as Python, PHP, the Squid Proxy
server, and more. If installed, associated configuration files can generally be found in the
/etc/httpd/conf. d/ directory.

	 FIGURE 14-2	  

Apache
configuration files

The Apache Web Server  685

To configure a regular and a secure web server, you’ll need to understand the httpd.conf
and ssl.conf configuration files in some detail.

Analyze the Default Apache Configuration
Apache comes with a well-commented set of default configuration files. In this section,
you’ll examine some key directives in the httpd.conf configuration file. Browse through this
file in your favorite text editor or using a command pager such as less. Before beginning
this analysis, remember that the main Apache configuration file incorporates the files in the
/etc/httpd/conf.d directory with the following directive:

IncludeOptional conf.d/*.conf

The httpd.conf file also includes the configuration for external modules with the following
directive:

Include conf.modules.d/*.conf

The difference between IncludeOptional and Include is that the former does not generate
errors if the path specified does not match any file.

There are a couple of basic constructs in httpd.conf. First, directories, files, and modules
are configured in “containers.” The beginning of the container starts with the name of the
directory, file, or module to be configured, inside directional brackets (< >). Examples of this
include

<Directory "/var/www/html">
<Files "^\.ht*">
<IfModule mime_magic_module>

The end of the container is also an expression inside brackets (<>), which starts with a
forward slash (/). For the same examples, the ends of the containers would look like

</Directory>
</Files>
</IfModule>

Next, Apache includes a substantial number of directives—commands that Apache can
understand that have some resemblance to English. For example, the ExecCGI directive
supports executable CGI scripts.

While this provides an overview, the devil is often in the details, which are analyzed
(briefly) in the next section. If you’ve installed the httpd-manual RPM, get the Apache server
going and navigate to http://localhost/manual.

686  Chapter 14  The Apache Web Server

The Main Apache Configuration File
This section examines the default Apache configuration file, httpd.conf. We recommend
that you follow along on a test system such as server1.example.com. Only the default active
directives in that file are discussed here. Read the comments; they include more information
and options.

Once Apache and the httpd-manual RPMs are installed per Exercise 14-1, refer to http://
localhost/manual/mod/quickreference.html. It provides detailed information on each
directive. The default directives are summarized in the following tables. Table 14-1 specifies
directives shown near the beginning of the file.

In Tables 14-1 and 14-2, directives are listed in the order shown in the default version
of httpd.conf. If you want to experiment with different values for each directive, save the
change and then use systemctl restart httpd to restart the Apache daemon or systemctl
reload httpd to just reread the Apache configuration files.

Table 14-2 specifies directives associated with the Main Server Configuration section.

Basic Apache Configuration for a Simple Web Server
As described in Table 14-2, Apache looks for web pages in the directory specified by the
DocumentRoot directive. In the default httpd.conf file, this directive points to the
/var/www/html directory. In other words, all you need to get your web server up and
running is to transfer web pages to the /var/www/html directory.

The default DirectoryIndex directive looks for an index.html web page file in this directory.
A standard RHEL 7 index.html page is available in the /usr/share/doc/HTML/en-US
directory. Copy that file to the /var/www/html directory and then navigate to http://
localhost with a browser such as ELinks.

Directive Description

ServerRoot Sets the default directory for configuration files; any relative path referenced in the
configuration is a relative path to the ServerRoot directory.

Listen Specifies a port and possibly an IP address (for multihomed systems) to listen for requests.
Include Adds the content of other configuration files.
User Specifies the username that Apache runs as on the local system.
Group Specifies the group name that Apache runs as on the local system.

	 TABLE 14-1	   Global Environment Directives

The Apache Web Server  687

The base location of configuration and log files is determined by the ServerRoot directive.
The default value from httpd.conf is

ServerRoot "/etc/httpd"

Figure 14-2 confirms that the main Apache configuration files are stored in the conf/,
conf.d/, and conf.d.modules/ subdirectories of ServerRoot. Run the ls -l /etc/httpd command.
Note the soft-linked directories. You should see a link from the /etc/httpd/logs directory
to the directory with the actual log files, /var/log/httpd.

Directive Description

ServerAdmin Sets the administrative e-mail address; may be shown (or linked to) on default
error pages.

AllowOverride Supports overriding of previous directives from .htaccess files.
Require Grants or denies access to a directory for all users or specific users/groups.
DocumentRoot Assigns the root directory for website files.
Options Specifies features associated with web directories, such as ExecCGI,

FollowSymLinks, Includes, Indexes, MultiViews, and SymLinksIfOwnerMatch.
DirectoryIndex Specifies files to look for when navigating to a directory; set to index.html by default.
ErrorLog Locates the error log file, relative to ServerRoot.
LogLevel Specifies the level of log messages.
LogFormat Sets the information included in log files.
CustomLog Creates a customized log file, using an existing log format, with a location

relative to ServerRoot.
ScriptAlias Similar to Alias, maps a web path into a filesystem location outside of

DocumentRoot; in addition to Alias, it tells Apache that the noted directory
contains CGI scripts.

TypesConfig Locates mime.types, which specifies file types associated with extensions.
AddType Maps filename extensions to a specified content type.
AddOutputFilter Maps filename extensions to a specified filter.
AddDefaultCharset Sets a default character encoding.
MIMEMagicFile Normally uses the file /etc/httpd/conf/magic to determine the MIME type of a file.
EnableSendfile Uses the sendfile system call to send static files to clients for better

performance.

	 TABLE 14-2	   Main Server Configuration Directives

688  Chapter 14  The Apache Web Server

Apache Log Files
As suggested earlier, while Apache log files are configured to be saved in the /etc/httpd/logs
directory, they’re actually stored in the /var/log/httpd directory. In fact, /etc/httpd/logs is a
symbolic link to /var/log/httpd. Standard logging information from Apache is stored in two
baseline log files. Custom log files may also be configured. Such log files may have different
names, depending on how virtual hosts are set up, how secure websites are configured, and
how logs are rotated.

Based on the standard Apache configuration files, access attempts are logged in the
access_log file and errors are recorded in the error_log file. Standard secure log files include
ssl_access_log, ssl_error_log, and ssl_request_log.

In general, it’s helpful to configure different sets of log files for different websites. To that
end, you should also set up different log files for the secure versions of a website. The traffic
on a website is important when choosing a log-rotation frequency.

There are standard Apache log file formats. For more information, take a look at the
LogFormat directive in Figure 14-3. Three different formats are shown: common, combined
(similar to common, but also includes the web page used to get to your site and the user’s web
browser type and version), and combinedio (same as the combined format, plus a log of the
bytes received and sent by the server and client). The LogFormat lines include a number of
percent signs followed by lowercase letters. These directives determine what goes into the log.

	 FIGURE 14-3	  

Specific log
formats

Standard Apache Security Configuration  689

You can then use the CustomLog directive to select a location for the log file, such
as logs/special_access_log, and the desired log file format, such as common. For more
information on log files and formats, refer to http://localhost/manual/logs.html.

Some web log analyzers have specific requirements for log file formats. For
example, the popular open-source tool AWStats (Advanced Web Statistics) uses
the combined log format. AWStats is a great tool for graphically displaying site
activity. You can install it from the EPEL (Extra Packages for Enterprise Linux)
repository.

CERTIFICATION OBJECTIVE 14.02

Standard Apache Security Configuration
You can configure several layers of security for the Apache web server. Firewalls based on
the firewall-cmd command can limit access to specific hosts. Security options based on
rules in Apache configuration files can also be used to limit access to specific users, groups,
and hosts. Of course, secure Apache websites can encrypt communication. If there is a
problem, SELinux can limit the risks.

Ports and Firewalls
With the Listen and VirtualHost directives, the Apache web server specifies the standard
communication ports associated with both the HTTP and HTTPS protocols, 80 and 443. To
allow external communication through the noted ports, you can set up both ports as trusted
services in the Firewall Configuration tool.

Of course, for systems where HTTP and HTTPS are configured on nonstandard ports,
you’ll have to adjust the associated firewall-cmd rules accordingly.

If you just open these ports indiscriminately, the firewall allows traffic from all systems. It
may be appropriate to set up a rich rule to limit access to one or more systems or networks.
For example, the following custom rich rule allows access to every system except the one
with IP address 192.168.122.150, over port 80:

firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source \
address=192.168.122.150 service name=http reject'
firewall-cmd --reload

Similar rules may be required for port 443. Of course, that depends on the requirements
of the job and possibly the RHCE exam.

690  Chapter 14  The Apache Web Server

Apache and SELinux
Take a look at the SELinux settings associated with Apache. To review, SELinux settings
mostly fall into two categories: boolean settings and file labels. Start with the file labels.

Apache and SELinux File Labels
The default file labels for Apache configuration files are consistent, as shown in the output
to the ls -Z /etc/httpd and ls -Z /var/www commands. Individual files use the same
contexts as their directory. The differences in the file contexts are shown in Table 14-3.

The first five are just the default SELinux contexts for standard directories. For websites
where scripts read and/or append data to web forms, you’d consider the last two contexts,
which support read/write (rw) and read/append (ra) access.

The contexts listed in Table 14-3 are the most common ones. For a full list of all file
contexts related to the Apache web server and their corresponding SELinux labeling rules,
run the following command:

semanage fcontext -l | grep httpd_

Create a Special Web Directory
In many cases, you’ll create dedicated directories for each virtual website. It’s better to
segregate the files for each website in their own directory tree. But with SELinux, you can’t
just create a special web directory. You’ll want to make sure that new directory at least
matches the SELinux contexts of the default /var/www directory.

Run the ls -Z /var/www command. Note the SELinux contexts. For most subdirectories
of /var/www, the default type is http_sys_content_t. For a newly created /www directory,
you could just create a new SELinux rule and change the file contexts with the following

Directory SELinux Context Type

/etc/httpd, /etc/httpd/conf, /etc/httpd/conf.d, /etc/httpd/conf.modules.d,
/etc/httpd/run

httpd_config_t

/usr/lib64/httpd/modules httpd_modules_t
/var/log/httpd httpd_log_t
/var/www, /var/www/html httpd_sys_content_t
/var/www/cgi-bin httpd_sys_script_exec_t
n/a httpd_sys_rw_content_t
n/a httpd_sys_ra_content_t

	 TABLE 14-3	   SELinux File Contexts for the Apache Web Server

Standard Apache Security Configuration  691

commands. The -R applies the changes recursively, so the new contexts are applied to all
files and subdirectories.

semanage fcontext -a -t httpd_sys_content_t '/www(/.*)?'
restorecon -R /www

The first command creates a file_contexts.local file in the /etc/selinux/targeted/contexts/files
directory. If there’s also a cgi-bin/ subdirectory, you’ll want to set up appropriate contexts
for that subdirectory as well with the following command:

semanage fcontext -a -t httpd_sys_script_exec_t '/www/cgi-bin(/.*)?'

Apache and SELinux Boolean Settings
Boolean settings are more extensive. For display purposes, we’ve isolated them in the
SELinux Administration tool, as shown in Figure 14-4. Only a few SELinux boolean settings
are enabled by default, and they’re described in Table 14-4.

	 FIGURE 14-4	   Apache-related SELinux boolean settings

692  Chapter 14  The Apache Web Server

Out of the many other SELinux options, pay attention to httpd_enable_homedirs, which
supports access to files on user home directories. Other scripts of potential interest relate
to interactions with other services, specifically httpd_enable_ftp_server, httpd_use_cifs,
and httpd_use_nfs. These options allow Apache to act as an FTP server, as well as to read
shared Samba/NFS directories.

The uses of these and the other disabled SELinux Apache-related options from Figure
14-4 are summarized in Table 14-5. All descriptions are based on the perspective “What would
happen if the boolean were enabled?” For variety, the terms HTTP and Apache are used
interchangeably; strictly speaking, Apache is one option for HTTP and HTTPS services.

Module Management
The Apache web server includes many modular features. For example, it’s not possible to
set up SSL-secured websites without the mod_ssl package, which includes the mod_ssl.so
module along with the ssl.conf configuration file.

A number of other similar systems are organized in modules. Loaded modules are
included in standard Apache configuration files with the LoadModule directive. A full
list of available modules is located in the /usr/lib64/httpd/modules directory, but available
modules aren’t used unless they’re loaded with the LoadModule directive in appropriate
Apache configuration files within the /etc/httpd/conf.modules.d directory.

Security Within Apache
You’ve read about (and hopefully tested) Apache security options related to the zone-based
firewall as well as SELinux. Now you’ll examine the security options available in the main
Apache configuration file, httpd.conf. That file can be modified to secure the entire server
or to configure security on a directory-by-directory basis. Directory controls secure access
by the server, as well as users who connect to the websites on the server.

To explore the basics of Apache security, let’s start with the ServerTokens directive:

ServerTokens OS

Active Boolean Description

httpd_builtin_scripting Supports the use of scripts (such as PHP)
httpd_enable_cgi Allows HTTP services to execute CGI scripts, labeled with the

httpd_sys_script_exec_t type
httpd_graceful_shutdown Allows Apache to connect to port 80 for graceful shutdown

	 TABLE 14-4	   Default Active Apache-Related SELinux Boolean Settings

Standard Apache Security Configuration  693

Inactive Boolean Description

httpd_anon_write Allows the web server to write to files labeled with the
public_content_rw_t file type.

httpd_can_check_spam Works with web-based e-mail applications to check for spam.
httpd_can_network_connect Allows Apache scripts/modules to establish TCP network

connections.
httpd_can_network_connect_
cobbler

Enables Apache scripts/modules to connect to Cobbler over the
network.

httpd_can_network_connect_db Allows Apache scripts/modules to connect to a database server
over the network.

httpd_can_network_memcache Enables Apache to connect to a memcache server.
httpd_can_network_relay Supports the use of the HTTP service as a forward or reverse proxy.
httpd_can_sendmail Allows Apache to send mail.
httpd_enable_homedirs Grants Apache permission to access files in user home directories;

the files must be labeled with the httpd_sys_content_t SELinux type.
httpd_execmem Supports access from HTTP modules to executable memory

regions; some Java applications may require this permission.
httpd_mod_auth_ntlm_winbind Supports authentication to Microsoft Active Directory if the

mod_auth_ntlm_winbind module is loaded.
httpd_mod_auth_pam Enables access to PAM authentication modules if the mod_auth_

pam module is loaded.
httpd_setrlimit Allows Apache to modify its resource limits, such as the

maximum number of file descriptors.
httpd_ssi_exec Allows Apache to execute Server Side Include (SSI) scripts in a page.
httpd_tmp_exec Supports the execution of scripts in the /tmp directory.
httpd_tty_comm Supports access to a terminal; needed by Apache to prompt for

a password if the private key of a TLS certificate is password-
protected.

httpd_use_cifs Enables Apache access to shared Samba directories when labeled
with the cifs_t file type.

httpd_use_fuse Allows Apache to access FUSE file systems, such as GlusterFS
volumes.

httpd_use_gpg Grants Apache permissions to run gpg.
httpd_use_nfs Enables Apache access to shared NFS directories when labeled

with the nfs_t file type.
httpd_use_openstack Allows Apache to access OpenStack ports.
httpd_sys_script_anon_write Configures write access by scripts to files labeled with the

public_content_rw_t file type.

	 TABLE 14-5	   Default Inactive Apache-Related SELinux Boolean Settings

694  Chapter 14  The Apache Web Server

This line looks deceptively simple; it limits the information that Apache sends in its
“Server” response header. This information is sometimes displayed if you navigate to a
nonexistent page, but you can also fetch the HTTP headers that Apache sends to clients
using the following command:

$ curl --head http://localhost

Edit the httpd.conf file and add a ServerTokens OS line at the top. Then, reload the
server configuration by running systemctl reload httpd and open the default web page in a
browser. You should see the following Server header:

Server: Apache/2.4.6 (Red Hat Enterprise Linux)

Contrast that output with what happens if you change that line to ServerTokens Full:

Server: Apache/2.4.6 (Red Hat) OpenSSL/1.0.1e-fips mod_auth_kerb/5.4
mod_fcgid/2.3.9 mod_wsgi/3.4 Python/2.7.5

In other words, with one option, outsiders can see whether modules such as FastCGI
have been loaded, along with their version numbers. As not everyone updates their software
in a perfectly timely manner, imagine what happens when a black hat hacker sees a version
that has been compromised. For this reason, we recommend that you set ServerTokens
Prod to limit the amount of information about the server that is sent to clients.

Next, look at the default access settings for all files and directories in the root filesystem:

<Directory />
 AllowOverride None
 Require all denied
</Directory>

This configures a very restrictive set of permissions. The Require all denied line denies
access to all content within the root filesystem for all users. The AllowOverride None line
disables any .htaccess files. A .htaccess file is placed inside a web directory and contains
directives that can override the default web server settings.

However, there’s an appropriate use for .htaccess files. For example, in a shared hosting
environment, when placed in a subdirectory such as /www/html/customer023, an .htaccess
file can override the default server settings and permit access to authenticated users, and
such changes would apply only to that directory and its subdirectories.

You can also limit access to all but explicitly allowed domains or IP addresses by adding
the following commands to the desired <Directory> container:

Order Allow,Deny
Allow from example.com
Deny from all

Standard Apache Security Configuration  695

The next <Directory> container limits access to /var/www, the default location for
website files and CGI scripts:

<Directory "/var/www">
 AllowOverride None
 # Allow open access:
 Require all granted
</Directory>

The Require all granted directive grants access to the content of /var/www unconditionally.
The next <Directory> block regulates access to the /var/www/html directory, which
corresponds to the same path referenced by the DocumentRoot directive (while the following
directives are divided by numerous comments, they are all in the same container):

<Directory "/var/www/html">
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>

The Options directive enables two features: the Indexes setting allows readers to see a
list of files on the web server if no index.html file is present in the specified directory, and
the FollowSymLinks option supports the use of symbolic links.

But wait a second! By default, there are no files in the /var/www/html directory. Based on
the description, you should navigate to the system in question and see the screen shown in
Figure 14-5. As there are no files in the /var/www/html directory, no files are shown in the
output.

However, when you navigate to the default website associated with the Apache server, the
page shown in Figure 14-6 appears. For more information on how that works, see Exercise 14-2.

	 FIGURE 14-5	   Browse to an index of files.

696  Chapter 14  The Apache Web Server

Finally, the Listen directive defines the IP address and TCP/IP port for this server. For
example, the default shown next means that this server will work with every client that
requests a web page from any of the IP addresses of your server on the standard TCP/IP
port, 80:

Listen 80

If more than one IP address is available on the local system, the Listen directive can be
used to limit access to one specific IP address. For example, if a system has two network
cards with IP addresses 192.168.0.200/24 and 192.168.122.1/24, the following directive can
help limit access to systems on the 192.168.122.0/24 network:

Listen 192.168.122.1:80

For secure websites, there’s a second Listen
directive in the ssl.conf file in the /etc/httpd/
conf.d directory. The data from this file is
automatically incorporated into the overall
Apache configuration, courtesy of a directive
described in Exercise 14-2. It includes the
following directive, which points to the default
secure HTTP (HTTPS) port for TCP/IP, 443:

Listen 443 https

	 FIGURE 14-6	   Browse to the default Apache test page.

The RHCE objectives
suggest that you need to be ready to
configure regular HTTP and secure HTTPS
websites.

Standard Apache Security Configuration  697

EXERCISE 14-2

The Apache Welcome and the noindex.html Story
In this exercise, you’ll trace the story behind the standard test page associated with the
Apache web server, like that shown in Figure 14-6. This exercise assumes the httpd package
is already installed and the Apache service is running. You’ll also see what happens when the
path to that web page is broken, with an index of a bunch of test files in the /var/www/html
directory.

1.	 Open the httpd.conf file in the /etc/httpd/conf directory. Find the following line:

IncludeOptional conf.d/*.conf

	 The IncludeOptional conf.d/*.conf directive includes the contents of *.conf files
from the /etc/httpd/conf.d directory in the Apache configuration. Exit from the
httpd.conf file.

2.	 Navigate to the /etc/httpd/conf.d directory. Open the welcome.conf file.
3.	 Identify and make a note of the parameters of the Alias directive.
4.	 Note the ErrorDocument page. While it points to the /.noindex.html file, that’s

based on the aforementioned Alias directive. In other words, you should be able to
find the index.html file in the /usr/share/httpd/noindex directory.

5.	 Take a look at the /usr/share/httpd/noindex/index.html file. To open it up in the
ELinks browser, run the elinks /usr/share/httpd/noindex/index.html command.
The web page that appears should now be familiar.

6.	 Exit from the browser. Move the welcome.conf file from the /etc/httpd/conf.d
directory to a backup location.

7.	 Reload the Apache configuration with the systemctl reload httpd command.
8.	 Navigate to the localhost system with the elinks http://127.0.0.1 command. What

do you see?
9.	 Open a second terminal, navigate to the /var/www/html directory, and run the

touch test{1,2,3,4} command.
10.	 Reload the browser in the original terminal. In ELinks, ctrl-r reloads the browser.

What do you see?
11.	 Exit from the browser. Restore the welcome.conf file to the /etc/httpd/conf.d directory.

698  Chapter 14  The Apache Web Server

EXERCISE 14-3

Create a List of Files
In this exercise, you’ll be setting up a list of files to share with others who access your web
server. The process is fairly simple; you’ll configure an appropriate firewall rule, create a
subdirectory of DocumentRoot, fill it with several files, set up the appropriate security
contexts, and activate Apache.

1.	 Make sure the firewall does not block access to ports 80 and 443. One way to do so is
with the firewall-cmd --list-all command, which displays all services enabled in the
default zone. Alternatively, you could use the firewall-config GUI tool.

2.	 Create a subdirectory of DocumentRoot, which is /var/www/html by default. For
this exercise, we’ve created the /var/www/html/help directory.

3.	 Copy the files from the /var/www/manual directory:

cp -a /usr/share/httpd/manual/* /var/www/html/help/

4.	 Ensure that the Apache service is running with the following command:

systemctl status httpd

5.	 Make sure Apache starts the next time you boot:

systemctl enable httpd

6.	 Use the ls -Zd /var/www/html and ls -Z /var/www/html/help commands to
review the security context for the sharing directory and copied files. If the security
context doesn’t already correspond to the contexts shown here, set them up with the
following command:

restorecon -R /var/www/html/help

7.	 Start the ELinks browser on the local server, directed at the help/ subdirectory:

elinks http://127.0.0.1/help

8.	 Go to a remote system and try accessing the same web directory. For example, if the
IP address of the local system is 192.168.122.50, navigate to http://192.168.122.50/help.
If possible, try this a second time from a conventional GUI browser.

Host-Based Security
You can add the Order, allow, and deny directives to regulate access based on hostnames or
IP addresses. The following standard command sequence allows access by default. It reads
the deny directive first:

Order deny,allow

Standard Apache Security Configuration  699

You can deny or allow from various forms
of hostnames or IP addresses. For example,
the following directive denies access from all
computers in the mheducation.com domain:

Deny from mheducation.com

If you don’t want to rely on the DNS service,
you may prefer to use IP addresses. The first of
the following sample directives uses a single IP

address; alternatively, you can set up the 192.168.122.0 subnet in partial, netmask, or CIDR
(Classless InterDomain Routing) notation, as shown here:

Deny from 192.168.122.66
Allow from 192.168.122
Deny from 192.168.122.0/255.255.255.0
Allow from 192.168.122.0/24

User-Based Security
You can limit access to websites configured on the Apache server to authorized users
with passwords. As described shortly, these passwords can be different from the system
authentication database.

For example, to configure user-based security for the website described in Exercise 14-3,
you’ll need to set up a <Directory> container on the /var/www/html/help directory. You’ll
want several commands in the <Directory> container:

■■ To set up basic authentication, you’ll need an AuthType Basic directive.
■■ To describe the site to requesting users, you can include an AuthName “some

comment” directive.
■■ To refer to a web server password database named /etc/httpd/webpass, you’ll need a

AuthUserFile /etc/httpd/webpass directive.
■■ To limit the site to a single user named engineer1, you could add a Require user

engineer1 directive.
■■ Alternatively, to limit the site to a group as defined in /etc/httpd/webgroups, you’d

add the AuthGroupFile /etc/httpd/webgroups directive. You would also need
a directive such as Require group design, where design is the name of the group
specified in webgroups.

If you set Order allow,deny,
access is denied by default. Only those
hostnames or IP addresses associated with
the allow directive are allowed access.

700  Chapter 14  The Apache Web Server

Here’s an example of code that we’ve added after the <Virtual Host> container:

<Directory "/var/www/html/help">
 AuthType Basic
 AuthName "Password Protected Test"
 AuthUserFile /etc/httpd/webpass
 Require user engineer1
</Directory>

With this configuration in place, Figure 14-7 illustrates the username/password prompt
that appears when you access the http://server1.example.com/help website in a regular web
browser. To authenticate, you will also need to create a local password database for Apache.
We’ll cover this topic in the next section and in Exercise 14-4.

CERTIFICATION OBJECTIVE 14.03

Specialized Apache Directories
In this section, you’ll explore several options for specialized Apache directories. It may be
appropriate to set up specialized security for some of these directories with the .htaccess
file. As suggested earlier, you can set up password protection based on users and groups,
which corresponds to the “private directories” cited in the RHCE objectives. One example
preconfigured for a private home directory is shown in the conf.d/userdir.conf file. With the
right options, such directories can also be managed by members of a group.

	 FIGURE 14-7	   Password protection for a website

Specialized Apache Directories  701

Once any changes are made to the Apache configuration files, you may want to test the
result. To do so you could run the systemctl restart httpd command. Alternatively, to make
Apache reload the configuration file without kicking off any currently connected users,
run the systemctl reload httpd command, which is functionally equivalent to apachectl
graceful.

Control Through the .htaccess File
With all of the complexity associated with the httpd.conf file, you might look at the .htaccess
file and think, “Great, one more complication.” But used correctly, the .htaccess file can
simplify the list of directives applied to a directory, or a virtual host, because it can be used
to override inherited permissions. To do so, you’ll need to include the following command
in targeted <Directory> containers:

AllowOverride Options

Then you can configure .htaccess files to override previously set directory options. The
.htaccess file can be stored in any web directory, labeled with the httpd_sys_content_t
SELinux type.

Password-Protected Access
To configure passwords for a website, you need to create a separate database of usernames
and passwords. Just as the useradd and passwd commands are used for regular users, the
htpasswd command is used to set up usernames and passwords for Apache.

For example, to create a database file named webpass in the /etc/httpd directory, start
with the following command:

htpasswd -c /etc/httpd/webpass engineer1

The -c switch creates the specified file, and the first user is engineer1. You’re prompted to
enter a password for engineer1. Users in the webpass database do not need to have a regular
Linux account. Note the use of the ServerRoot directory (/etc/httpd). It’s also helpful when
configuring virtual hosts.

If you want to add more users to this authentication database, leave out the -c switch. For
example, the following command sets up a second account for user drafter1:

htpasswd /etc/httpd/webpass drafter1

To set up access for more than one user, you may also want to create a group file. For
example, to set up the engineer1 and drafter1 users as a group named design, you could add
the following line to the /etc/httpd/grouppass file:

design: engineer1 drafter1

702  Chapter 14  The Apache Web Server

In this case, the AuthUserFile directive would be associated with the /etc/httpd/webpass
authentication database, and the AuthGroupFile directive would be associated with the group
database.

Home Directory Access
The default /etc/httpd/conf.d/userdir.conf file includes commented suggestions that
can enable access to user home directories. One useful option is access to a user’s home
directory. You can start to set up access to user home directories by changing the following
directives from

UserDir disabled
#UserDir public_html

to

#UserDir disabled
UserDir public_html

Then anyone will have access to web pages that a user puts in his or her ~/public_html
directory. For example, a user named michael can create a /home/michael/public_html
directory and add the web pages of his choice.

However, this requires a bit of a security compromise; you need to make michael’s home
directory executable for all users. This is also known as 701 permissions, which can be
configured with the following command:

chmod 701 /home/michael

You’ll also need to make the public_html subdirectory executable by all users in the same
way with the following command:

chmod 701 /home/michael/public_html

But that entails some security risks. Even though a malicious hacker might not be able to
directly read the contents of the noted directories, if he sees a script through the resulting
website, he’d be able to execute that script as any logged-in user.

There is one alternative for filesystems with Access Control List (ACL) support (see
Chapter 4). You could create ACLs on the noted directories specifically for the user named
apache. For user michael and his home directory, you could run the following commands:

setfacl -m u:apache:x /home/michael
setfacl -m u:apache:x /home/michael/public_html

Whether permissions are set directly or through ACLs, the logical next step as a web
server is to add an index.html file to this directory. For our purposes, it can be a text file.

Specialized Apache Directories  703

The commented container that follows is one excellent way to help keep home directories
thus shared a bit more secure.

In addition, SELinux must be configured to “Allow HTTPD To Read Home Directories,”
associated with the httpd_enable_homedirs boolean. You can activate that option either
with the SELinux Administration tool or with the setsebool -P httpd_enable_homedirs 1
command.

At that point, a web server that’s directed to user michael’s directory can read an index
.html file in the public_html subdirectory. Figure 14-8 illustrates the result, where the noted
text is the only content of index.html. Note that users’ public_html directories are accessible
at the URL http://servername/~user, where user is the corresponding username.

Of course, additional settings are included in the userdir.conf file. The container that
starts with the following line supports additional levels of access to the public_html
subdirectory of all users’ home directories:

<Directory "/home/*/public_html">

The AllowOverride directive allows users to set an .htaccess file to override the default
server settings related to document types (FileInfo); access associated with authorization
directives (AuthConfig); access secured by directives such as Allow, Deny, and Order; and to
override the default directory indexing settings.

 AllowOverride FileInfo AuthConfig Limit Indexes

	 FIGURE 14-8	  

View the index
.html file for user
Michael.

704  Chapter 14  The Apache Web Server

The Options directive configures what can be seen in a specific directory, based on
content negotiation (MultiViews), a list of files in the current directory (Indexes), an option
that allows symbolic links only if associated with the same owner (SymLinksIfOwnerMatch),
and also activates an option that does not allow scripts (IncludesNoExec). While it may be a
bad security practice to allow a script in a user directory, it may be appropriate for users who
are developers on test systems, and possibly during a Red Hat exam. In that case, you would
remove the IncludesNoExec option:

 Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec

The Require directive limits access only to the listed HTTP methods:

 Require method GET POST OPTIONS

You could combine these directives with password protection. One straightforward
possibility is to require the username and password of the user whose home directory is
being shared. But as noted earlier, the authentication database generated by htpasswd is
unrelated to the shadow password suite. You can use the Apache module mod_authnz_ldap
if you want to implement authentication and authorization against an LDAP directory.
However, this is outside the scope of the RHCE exam.

Group-Managed Directories
You can combine the features of group directories discussed in Chapter 8 with the
public_html/ subdirectory just described. However, the steps required to set up a group to
manage shared web content are somewhat different. Specifically, to set up a group-managed
directory, it’s best to start that group as a user. The standard Apache configuration directives
for a private user can apply to private groups. Conceptually, you’d take the following steps:

1.	 Create a regular user.
2.	 Set up that user with a higher UID and GID number, beyond those associated with

existing local and network users.
3.	 Configure the home directory of that user with the user nobody as the owner. Set up

the login shell of that user as /sbin/nologin.
4.	 Create the public_html subdirectory.
5.	 Change permissions for the group home directory, with associated subdirectories,

to be consistent with the group requirements described in Chapter 8, along with the
requirements of the Apache web server. For example, if the new group directory is
/home/design, you’d run the following command:

chmod -R 2771 /home/design

Specialized Apache Directories  705

	 Of course, as discussed in Chapter 8, you could substitute an executable ACL
restricted to the user named apache for the execute bit for all users. In that case,
you’d run the following commands:

chmod -R 2770 /home/design
setfacl -m u:apache:x /home/design
setfacl -m u:apache:x /home/design/public_html

6.	 Log in as a user member of the new group. Create a new file in the public_html
subdirectory. Check the ownership of that file; with the Super Group ID (SGID) bit
included in the chmod command, the group owner should be the owner of all files
created in the public_html subdirectory.

7.	 Make the changes described earlier in this chapter in the httpd.conf file associated
with the UserDir directive.

8.	 Make the Apache web server reread the file.

You will have a chance to set this up in one of the chapter labs.

EXERCISE 14-4

Password Protection for a Web Directory
In this exercise, you’ll configure password protection for your regular user account on a
subdirectory of DocumentRoot. This involves the use of the AuthType Basic, AuthName,
and AuthUserFile directives. This will be done with the standard Apache website; virtual
hosts are covered in the next major section.

1.	 Back up the main configuration file, httpd.conf, from the /etc/httpd/conf directory.
Then open up that file in a text editor.

2.	 Navigate below the line <Directory "/var/www/html">. Create a new container for
a DocumentRoot subdirectory. One option is the /var/www/html/chapter directory.
The first and last directives in the stanza would look like this:

<Directory "/var/www/html/chapter">
</Directory>

3.	 Add the following directives: AuthType Basic to set up basic authentication, the
AuthName "Password Protected Test" directive to configure a comment that you
should see shortly, and the AuthUserFile /etc/httpd/testpass directive to point to a
password file. Substitute your regular username for testuser in Require user testuser.

<Directory "/var/www/html/chapter">
 AuthType Basic
 AuthName "Password Protected Test"
 AuthUserFile /etc/httpd/testpass
 Require user testuser
</Directory>

706  Chapter 14  The Apache Web Server

4.	 Check the syntax of your changes with either of the following commands:

httpd -t
httpd –S

5.	 Assuming the syntax checks out, make Apache reread the configuration files:

systemctl reload httpd

6.	 Add an appropriate index.html file to the /var/www/html/chapter directory. It’s okay
to use a text editor to enter a simple line such as “test was successful.” No HTML
coding is required.

7.	 Create the /etc/httpd/testpass file with an appropriate password. On our systems,
we created a web password for users michael and alex in the noted file with the
following commands:

htpasswd -c /etc/httpd/testpass michael
htpasswd /etc/httpd/testpass alex

	 If you’re adding another user, leave out the -c switch.
8.	 Test the result, preferably from another system. (In other words, make sure the

firewall allows access from at least one remote system.)
9.	 You should now see a request for a username and password, with the comment

associated with the AuthName directive. Enter the username and password just
added to /etc/httpd/testpass and observe the result.

10.	 Close the browser, and restore any earlier configuration.

CERTIFICATION OBJECTIVE 14.04

Regular and Secure Virtual Hosts
Perhaps the most useful feature of Apache is its ability to handle multiple websites on a
single IP address. In a world where there are virtually no more new IPv4 addresses
available, this can be useful. To do so, you can configure virtual hosts for regular websites
as separate configuration files in the /etc/httpd/conf.d directory. In that way, you can
configure multiple domain names such as www.example.com and www.mheducation
.com on the same IP address on the same Apache server. This is referred as “name-based”
virtual hosting.

Regular and Secure Virtual Hosts  707

Conversely, you can configure a different IP address for each virtual host. This is known
as “IP-based” virtual hosting. Both approaches are valid, although name-based virtual
hosting is usually preferred because it can significantly reduce your public IP requirements.

The example.com, example.org, and example.net domain names cannot be
registered and are officially reserved by the Internet Engineering Task Force
(IETF) for documentation. Many other example.* domains are also reserved by
appropriate authorities.

In the same fashion, you can create multiple secure websites accessible through the
HTTPS protocol. While the details vary, the basic directives associated with both regular
and secure virtual hosts are the same.

If you use the ELinks text-based browser to test the connection to the regular and secure
virtual websites created in this chapter, there are several things to keep in mind:

■■ Make sure the /etc/hosts file of the client systems includes the IP address with the
specified fully qualified domain names (FQDNs). IP addresses with different FQDNs
are normal. (If there’s a DNS server for the local network, you can skip this step.)

■■ Open the /etc/elinks.conf configuration file, and set the first directive in that file to 0,
to disable certificate verification.

■■ To access a regular website, make sure to include the protocol in front of the FQDN,
such as http://vhost1.example.com or https://vhost2.example.com.

The beauty of VirtualHost is that you can copy virtually the same container to create
as many websites on an Apache server, limited only by the capabilities of the hardware.

All that’s required is one IP address. The
next virtual host can be set up with a copy
of the original VirtualHost container. All
that you absolutely have to change for name-
based virtual hosts is the ServerName.
Most administrators will also change the
DocumentRoot, but even that’s not absolutely
necessary. You’ll see how that works for regular
and secure virtual hosts in the following
sections.

The Standard Virtual Host
In RHEL 6, the default httpd.conf included sample directives that could be used to create one
or more virtual hosts. This is not the case anymore, so if you forget the syntax to create a new
virtual host, you may look at the Apache documentation at http://localhost/manual/vhosts.

Be prepared to create
multiple websites on an Apache web server
using virtual hosts. It’s best to create
separate VirtualHost containers in different
configuration files for this purpose.

708  Chapter 14  The Apache Web Server

As noted earlier, the IncludeOptional conf.d/*.conf directive automatically includes
information from *.conf files in that directory. With that in mind, create and edit a
vhost-dummy.conf file in the /etc/httpd/conf.d directory.

Then, add a <Directory> container to grant access to the content files of the website.
The following example assumes that the new host is named dummy-host.example.com and
that the website content is located in the directory /srv/dummy-host/www:

<Directory "/srv/dummy-host/www">
 Require all granted
</Directory>

Next, add a container for the virtual host configuration:

<VirtualHost *:80>
 ServerAdmin webmaster@dummy-host.example.com
 DocumentRoot /srv/dummy-host/www
 ServerName dummy-host.example.com
 ServerAlias www.dummy-host.example.com
 ErrorLog logs/dummy-host.example.com-error_log
 CustomLog logs/dummy-host.example.com-access_log common
</VirtualHost>

Port 80 is the default for serving web pages. You could also substitute <VirtualHost
192.168.122.50:80>, but in general you can leave that directive as is to support the use of
the same IP address for different websites.

If you’ve read the descriptions of the first two sections of the main part of the httpd
.conf file, you should recognize most of these directives. However, each directive points to
nonstandard files and directories. To review:

■■ The e-mail address defined by ServerAdmin is included in all error messages that
are returned to clients.

■■ The web pages can be stored in the DocumentRoot directory. Make sure the
SELinux security contexts of any DocumentRoot directory you create are consistent
with the contexts of the default /var/www directory (and subdirectories). Apply the
restorecon and semanage fcontext -a commands, as required, to make the security
contexts match. Note that by default the SELinux policy already marks the files in
/srv/*/www with the httpd_sys_content_t type.

■■ Based on the ServerName directive, Apache knows that requests to http://dummy-
host.example.com must use the configuration declared in this <VirtualHost> block.

■■ ServerAlias specifies additional names that the virtual host can be reached as.
■■ The ErrorLog and CustomLog directives specify a relative log directory, relative to

the ServerRoot. These files can be found in the /etc/httpd/logs directory. Normally,
that directory is soft linked to /var/logs/httpd.

Regular and Secure Virtual Hosts  709

You can add more directives to each virtual host container, to customize the settings for
the virtual host relative to the main configuration file. You’ll set up a CGI script in a virtual
host later in this chapter, with some custom directives.

It’s easy to configure a virtual host website. Substitute the IP domain names, directories,
files, and e-mail addresses of your choice. Create the DocumentRoot directory if it doesn’t
already exist. To that end, we’ve set up two virtual hosts with the following containers:

<Directory "/srv/vhost1.example.com/www">
 Require all granted
</Directory>
<VirtualHost *:80>
 ServerAdmin webmaster@vhost1.example.com
 DocumentRoot /srv/vhost1.example.com/www
 ServerName vhost1.example.com
 ErrorLog logs/vhost1.example.com-error_log
 CustomLog logs/vhost1.example.com-access_log common
</VirtualHost>

<Directory "/srv/vhost2.example.com/www">
 Require all granted
</Directory>
<VirtualHost *:80>
 ServerAdmin webmaster@vhost2.example.com
 DocumentRoot /srv/vhost2.example.com/www
 ServerName vhost2.example.com
 ErrorLog logs/vhost2.example.com-error_log
 CustomLog logs/vhost2.example.com-access_log common
</VirtualHost>

Don’t forget to set up the /etc/hosts file, or a DNS server for the local network, with the
IP addresses for the virtual host domain names described so far (dummy-host.example.com,
vhost1.example.com, and vhost2.example.com).

You should also make sure the SELinux contexts are appropriate. You can test the syntax
of any configuration changes with the following command:

httpd –t

Apache will verify your configuration or identify specific problems. When you run this
command on the default configuration, you’ll get the following message:

Syntax OK

If you’ve created multiple virtual hosts, you can check them as well with either of the
following commands:

httpd -S
httpd -D DUMP_VHOSTS

710  Chapter 14  The Apache Web Server

The output should list the default and individual virtual hosts. For example, we see the
following output from our server1.example.com RHEL 7 system:

VirtualHost configuration:
*:443 is a NameVirtualHost
 default server server1.example.com (/etc/httpd/conf.d/ssl.conf:56)
 port 443 namevhost server1.example.com (/etc/httpd/conf.d/ssl.conf:56)
wildcard NameVirtualHosts and _default_ servers:
*:80 is a NameVirtualHost
 default server vhost1.example.com (/etc/httpd/conf.d/vhost1.conf:1)
 port 80 namevhost vhost1.example.com (/etc/httpd/conf.d/vhost1.conf:1)
 port 80 namevhost vhost2.example.com (/etc/httpd/conf.d/vhost2.conf:1)

Secure Virtual Hosts
If you’re configuring a secure web server that conforms to the HTTPS protocol, Red Hat
provides a different configuration file for this purpose: ssl.conf in the /etc/httpd/conf.d
directory. If this file isn’t available, you need to install the mod_ssl package. Before editing
this file, back it up.

The first directive in ssl.conf ensures that the server listens on TCP port 443:

Listen 443 https

As suggested by the title, this configuration file includes a number of other SSL/TLS
directives. Generally, no changes are required to the following lines:

SSLPassPhraseDialog exec:/usr/libexec/httpd-ssl-pass-dialog
SSLSessionCache shmcb:/run/httpd/sslcache(512000)
SSLSessionCacheTimeout 300
SSLRandomSeed startup file:/dev/urandom 256
SSLRandomSeed connect builtin
SSLCryptoDevice builtin

Now you can set up virtual hosts with the directives that follow. The default ssl.conf
file also has a default virtual host container, but it is a bit difficult to read with all of the
comments. Therefore, a sample of the revised configuration file, focused on the virtual
host container for the vhost1.example.com system, is shown in Figure 14-9. You can edit
directly the ssl.conf file, although as a best practice it is recommended to use a separate
configuration file in /etc/httpd/conf.d for each virtual host.

In the default version of the ssl.conf file, examine the <VirtualHost _default_:443>
container. Compare it to the <VirtualHost *:80> container in the previous standard virtual
hosts configuration. Some changes are required. First, you should replace _default_ in the
VirtualHost container with an asterisk (*):

<VirtualHost *:443>

Regular and Secure Virtual Hosts  711

Don’t forget to add the https service to the default zone on the firewall:

firewall-cmd --permanent --add-service=https
firewall-cmd --reload

In the ssl.conf file, you should also include ServerAdmin, DocumentRoot, and
ServerName directives. Examples of directives that would be consistent with the virtual
hosts created in the preceding section include the following:

ServerAdmin webmaster@vhost1.example.com
DocumentRoot /srv/vhost1.example.com/www
ServerName vhost1.example.com

While the DocumentRoot directive can be set to any directory, it’s appropriate for
organizational purposes to keep the files associated with each virtual host in a dedicated
directory.

The standard error log directives can be changed. In fact, if you want log information for
each secure website to be set up in different files, they should be changed, as shown next.

	 FIGURE 14-9	  

Secure virtual
host container for
vhost1.example.com

712  Chapter 14  The Apache Web Server

Based on the ServerRoot directive from the httpd.conf file, these log files can be found in
the /var/log/httpd directory.

ErrorLog logs/vhost1_ssl_error_log
TransferLog logs/vhost1_ssl_access_log
LogLevel warn
CustomLog logs/vhost1_ssl_request_log \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

The TLS directives in the file are based on the default certificates for the localhost system.
Shortly, you’ll see how to configure a new TLS certificate. The following five directives, in
order, activate SSL/TLS, disable the insecure SSL version 2, support a variety of encryption
ciphers, and point to the default TLS certificate as well as the TLS key file:

SSLEngine on
SSLProtocol all -SSLv2
SSLCipherSuite HIGH:MEDIUM:!aNULL:!MD5
SSLCertificateFile /etc/pki/tls/certs/localhost.crt
SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

The container that follows relates to files with extensions associated with dynamic
content. For such files, along with any files in the standard CGI directory, standard SSL
environment variables are used:

<Files ~ "\.(cgi|shtml|phtml|php3?)$">
 SSLOptions +StdEnvVars
</Files>
<Directory "/var/www/cgi-bin">
 SSLOptions +StdEnvVars
</Directory>

The following container deals with situations associated with clients running legacy
versions of the Microsoft Internet Explorer browser:

BrowserMatch "MSIE [2-5]" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

Of course, the virtual host container ends with the following directive:

</VirtualHost>

You do not need to apply all the directives just listed to a new TLS-based virtual host. A
minimal configuration is shown next. This includes DocumentRoot, ServerName, and the
directives that enable TLS and configure the certificate path:

<VirtualHost *:443>
 DocumentRoot /srv/vhost1.example.com/www
 ServerName vhost1.example.com

Regular and Secure Virtual Hosts  713

 SSLEngine on
 SSLCertificateFile /etc/pki/tls/certs/vhost1.example.com.crt
 SSLCertificateKeyFile /etc/pki/tls/private/vhost1.example.com.key
</VirtualHost>

When Apache is configured with an untrusted certificate, regular clients that access that
site get a warning about the secure web host, as shown in Figure 14-10. In the next session
you will see how to generate a certificate request to be signed by a certificate authority.

Create a New TLS Certificate
While the default TLS certificate listed in the ssl.conf configuration file can work for
basic configuration, you may want to either create a customized self-signed certificate or
otherwise use an actual certificate signed from a reputable certificate authority (CA) such
as VeriSign or Thawte. Navigate to the /etc/pki/tls/certs directory. Note the file named

	 FIGURE 14-10	   A warning about secure hosts

714  Chapter 14  The Apache Web Server

Makefile in that directory. The code in that file can be used by the make command to create
a new certificate for each virtual host. As an alternative, you can use the genkey command
to automatically generate a private key and a “self-signed certificate” for the cited FQDN, as
shown in Figure 14-11.

genkey vhost2.example.com

The genkey command is convenient because when the process is complete, it automatically
writes the key to the /etc/pki/tls/private directory and the certificate to the /etc/pki/tls/certs
directory.

For the purpose of this section, select Next to continue. In the step shown in Figure 14-12,
you’d select a key size. In a production environment, the default size of 2048 bits is usually
appropriate. But in an exam context, you may want to select a smaller size to save time. The
Linux random number generator may require additional activity; this may be an excellent
time to put the process aside and do something else.

If you have nothing else to do and need to speed up the process, run some of the scripts
in the /etc/cron.daily directory. Run some of the find commands described in Chapter 3.
Click a bunch of times in an open terminal.

Once a key is generated, you’re prompted with a question: whether to generate a
Certificate Request (CSR) to send to a CA. Unless you run your own internal CA or you’re
actually preparing to purchase a signed certificate from a public CA, select No to continue.
You’re prompted to encrypt the key with a passphrase, as shown in Figure 14-13.

	 FIGURE 14-11	  

Generate a self-
signed certificate.

Regular and Secure Virtual Hosts  715

If security is most important, you should select the Encrypt the Private Key option. If
speed is important, avoid the option. Make a choice and select Next to continue. If you did
not select the Encrypt the Private Key option, you’ll be taken immediately to the certificate
details shown in Figure 14-14. Make any appropriate changes and select Next to continue.

If successful, you’ll see output similar to that shown in Figure 14-15.

	 FIGURE 14-12	  

Select a key size for
an SSL certificate.

	 FIGURE 14-13	  

Option to protect
with a passphrase

716  Chapter 14  The Apache Web Server

	 FIGURE 14-14	  

SSL certificate
details

	 FIGURE 14-15	  

SSL certificate
command output

Regular and Secure Virtual Hosts  717

Test Pages
You may need to create some index.html files to test virtual hosts in various situations, in
various pre-production configurations, or even during an exam. Fortunately, the Red Hat
exams don’t test knowledge of HTML. You could use Apache’s default web page. You can
change this or any other web page with a text- or HTML-specific editor.

You can even save a simple text file as index.html. For the purpose of this chapter, all we
put into the index.html file for the regular vhost1.example.com website is the following text:

Test web page for Virtual Host 1

Once appropriate changes were made to Apache configuration files, we restarted the
service. When we then ran the elinks http://vhost1.example.com command, the screen
shown in Figure 14-16 appeared.

Syntax Checkers
In many cases, the apachectl restart and the systemctl restart httpd commands will
reveal syntax problems. But that’s just in many cases. In some cases, you might try to restart
Apache, proceed to test the result with a client browser, and get frustrated, only to find
that Apache did not start because of a syntax error. To minimize the risk of that issue, the
following command checks the work that you’ve done to edit Apache configuration files:

httpd –S

You can also check the log messages captured by the systemd journal:

journalctl -u httpd

If no problems are found, you should be able to start the local web server and connect
from a client with a browser request.

	 FIGURE 14-16	  

A test web page

718  Chapter 14  The Apache Web Server

Apache Troubleshooting
When the right Apache packages are installed, the default configuration normally creates
a running system. You can check basic syntax with the httpd -t command. But if you’re
setting up a real website, you probably want more than just the test page. Before making
changes, back up the Apache configuration files. If something goes wrong, you can always
start over.

Some Apache errors fall into the following categories:

■■ Error message about an inability to bind to an address  Another network process
may already be using the default http port (80). Alternatively, Apache is configured to
listen to the wrong IP address.

■■ Network addressing or routing errors  Double-check network settings. For
more information on network configuration, see Chapter 3’s section on network
configuration and troubleshooting.

■■ Apache not running  Run systemctl status httpd. Check the error_log in the
/var/log/httpd directory.

■■ Apache not running after a reboot  Run systemctl is-enabled httpd. Make sure
Apache (httpd) is set to start at the appropriate target during the boot process with
the command

systemctl enable httpd

Apache administration is a necessary skill for any Linux system engineer. You
should develop the ability to install, configure, and troubleshoot Apache quickly.
You should also be able to set up and customize virtual websites.

EXERCISE 14-5

Set Up a Virtual Web Server
In this exercise, you’ll set up a web server with a virtual website. You can use this technique
with different directories to set up additional virtual websites on the same Apache server.

1.	 Add a virtual website for the fictional company LuvLinex, with a URL of www.example
.com. Use the sample configurations from http://localhost/manual/vhosts for hints as
needed. Save the configuration in the vhost-luvlinex.conf file inside the /etc/httpd/conf.d
directory.

2.	 Assign the DocumentRoot directive to the /luvlinex directory. (Don’t forget to
create this directory on your system as well.)

Deploy a Basic CGI Application  719

3.	 Grant access to the files to be served using a Require all granted directive inside a
<Directory> block.

4.	 Open the /luvlinex/index.html file in a text editor. Add a simple line in text format such as

This is the placeholder for the LuvLinex Website.

5.	 Save this file.
6.	 If you’ve enabled SELinux on this system, you’ll have to modify the context type and

apply the restorecon command to the DocumentRoot directory:

semanage fcontext -a -t httpd_sys_content_t "/luvlinex(/.*)?"
restorecon -R /luvlinex

7.	 If you’re running a DNS service, update the associated database. Otherwise, update
/etc/hosts with www.example.com and the appropriate IP address.

8.	 If you want to check the syntax, run the httpd -t and httpd -D DUMP_VHOSTS
commands.

9.	 Remember to restart the Apache service; the proper way is with the systemctl
restart httpd command.

10.	 Ensure that the local firewall is configured to grant access to connections to the
HTTP service:

firewall-cmd --list-all
firewall-cmd --permanent --add-service=http
firewall-cmd --reload

11.	 Navigate to a remote system. Update the remote /etc/hosts if appropriate. Open the
browser of your choice. Test the access to the configured website (www.example.com).

12.	 Close the browser on the remote system. Restore the original httpd.conf
configuration file.

CERTIFICATION OBJECTIVE 14.05

Deploy a Basic CGI Application
When you see the RHCE objective to “deploy a basic CGI application,” the requirement is
easier than it looks. In fact, the steps required can be read from the Apache documentation,
available from the httpd-manual package. When the application is installed, navigate to
http://localhost/manual page. Apache documentation should appear. Select CGI: Dynamic
Content for detailed directions, as explained in the following sections.

720  Chapter 14  The Apache Web Server

Apache Configuration Changes for CGI Files
To allow Apache to read CGI files, the conf.modules.d/00-cgi.conf file includes the
LoadModule cgi_module directive. To control which directories include scripts, Apache
includes the ScriptAlias directive. For example, the following ScriptAlias directive links
the /cgi-bin/ URL path to the default /var/www/cgi-bin directory:

ScriptAlias /cgi-bin/ "/var/www/cgi-bin"

With this ScriptAlias directive, if the website is server1.example.com, scripts can be
found in the http://server1.example.com/cgi-bin/ URL.

Alternatively, you can set up CGI scripts in a directory other than /var/www/cgi-bin and
change the reference accordingly. The default <Directory> block configuration for
/var/www/cgi-bin is shown next:

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>

As suggested in the Apache web server documentation available from the httpd-manual
package, you’d need to make changes to allow CGI scripts outside a ScriptAlias directory to
actually be executable by the Apache server:

<Directory "/home/*/public_html">
 AllowOverride None
 Options ExecCGI
 AddHandler cgi-script .pl
 Require all granted
</Directory>

As a security measure, the AllowOverride None command prevents regular users
from changing configuration settings in that directory using an .htaccess file. The Options
ExecCGI line supports executable scripts in the noted directory. The AddHandler directive
associates CGI scripts with files with the .pl extension. The Require all granted line grants
access to the directory from all users.

If CGI scripts are required for one of the previously configured virtual hosts, you can set up
a different ScriptAlias and a corresponding <Directory> container. For the vhost1.example
.com site described previously, we add the following directives:

ScriptAlias /cgi-bin/ /srv/vhost1.example.com/cgi-bin/
<Directory "/srv/vhost1.example.com/cgi-bin">
 Options none
 Require all granted
</Directory>

Deploy a Basic CGI Application  721

Set Up a Simple CGI Script in Perl
The Apache documentation includes instructions on how to set up a simple CGI script in
the Perl programming language. Make sure that the httpd-manual package is installed and
the local httpd service is active. In a browser, navigate to http://localhost/manual. Under the
“How-To / Tutorials” section, click CGI: Dynamic Content. Scroll down to the “Writing a
CGI Program” section.

In this section, the Apache documentation suggests a simple Perl script, called first.pl,
based on the following code:

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "Hello, World!";

Create this file in the /srv/vhost1.example.com/cgi-bin directory. The first line is similar
to the #!/bin/bash shebang; in this case, perl is the command interpreter. The content
type is declared, followed by two newlines (as symbolized by the \n). The final line prints
the expression commonly used for introductory program scripts. CGI scripts need to be
executable by the apache user, and are usually assigned 755 permissions. In other words, once
the first.pl file is saved, you’d apply the noted permissions with the following command:

chmod 755 first.pl

Run the ls -Z command on the script. In the /var/www/cgi-bin directory, it should
inherit the httpd_sys_script_exec_t SELinux file type associated with the directory. If
necessary, you can apply the context type to the file and directory with the restorecon
command. If the script directory is set up in a custom directory other than /var/www/
cgi-bin, make sure the file type stays applied after a SELinux relabel with the semanage
fcontext -a command:

semanage fcontext -a -t httpd_sys_script_exec_t \
'/srv/vhost1.example.com/cgi-bin(/.*)?'

Connections to a Website
Once a CGI script is configured, you should be able to access that script from a client browser.
For the purpose of this exercise, assume the first.pl Perl script has been configured on the
server1.example.com system. You should then be able to review the result from a remote system
with the elinks http://vhost1.example.com/cgi-bin/first.pl command. If successful, the
following words should show up in the body of the browser:

Hello, world!

722  Chapter 14  The Apache Web Server

On occasion, you may see an error message such as “Internal Server Error.” The most
likely cause is a Perl script that does not have executable permissions for the user named
apache. To repeat, that’s normally addressed by giving that Perl script 755 permissions.

SCENARIO & SOLUTION

You need to configure one website. Install Apache; configure appropriate files in the
/var/www/html directory.

You need to configure multiple websites. With Apache, use <VirtualHost> containers
configured in separate files within the
/etc/httpd/conf.d directory.

You need to configure a secure website. Configure a virtual host in the ssl.conf file in the
/etc/httpd/conf.d directory.

You need a dedicated SSL certificate for the
www.example.org website.

Run the genkey www.example.org command.

The Apache service is not running after a
reboot.

Make sure the httpd service starts in the default
target with the systemctl enable httpd command. If
that’s okay, check the contents of the error_log in the
/var/log/httpd directory.

CGI scripts in Apache are not running. In the Apache configuration file, make sure the
ScriptAlias is pointing to the appropriate directory;
if no ScriptAlias is configured, ensure that the
ExecCGI option is active for the script directory and
that a AddHandler directive specifies the proper
script extension; make sure the script is executable
by Apache and matches default SELinux contexts in
the /var/www/cgi-bin directory.

CERTIFICATION SUMMARY
Apache is the most popular web server in use today. Key packages can be installed from the
“Web Server” package group. The httpd-manual package includes a locally browsable manual
that can help with other Apache configuration tasks, even during an exam. Key configuration
files include httpd.conf in the /etc/httpd/conf directory and ssl.conf in the /etc/httpd/conf.d
directory. With the help of sample containers in both noted configuration files, you can
create regular and secure virtual hosts for multiple websites on one system, even if only one
IP address is available. Related log files are stored in the /var/log/httpd directory.

Two-Minute Drill  723

You can allow access to Apache through ports 80 and 443 to some or all systems with
firewall-cmd. Apache files and directories are associated with several different SELinux
contexts. Different Apache functions may be regulated by a variety of different SELinux
boolean settings.

The Listen VirtualHost directives direct traffic to the Apache web server to ports such
as 80 and 443, along with specified virtual hosts. Host- and user-based security can also be
set up within Apache configuration files with commands such as htpasswd and directives
such as Require, Allow, and Deny.

With the right security options, user- and group-managed directories are possible. In
fact, there’s a commented container that can enable content in user home directories.
Group-managed directories are somewhat more complex, combining aspects of Apache-
based user directories and shared group directories discussed in Chapter 8. Also in
security, new certificates can be created for a specific host such as www.example.org with a
command like genkey www.example.org.

The configuration of CGI content on an Apache website is easier than it looks. In fact,
detailed information on the process is provided with Apache documentation, including a
Perl script that you can use to confirm that the resulting configuration works.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 14.

The Apache Web Server
❑❑ Red Hat Enterprise Linux includes the Apache web server, which is currently used by

more Internet websites than all other web servers combined.
❑❑ You can install Apache and associated packages as part of the “Web Server” package

group.
❑❑ Apache configuration files include httpd.conf in the /etc/httpd/conf directory and

ssl.conf in the /etc/httpd/conf.d directory.
❑❑ Log information for Apache is available in the /var/log/httpd directory.

Standard Apache Security Configuration
❑❑ Apache can be secured through firewall-cmd rules and various SELinux booleans

and contexts.

724  Chapter 14  The Apache Web Server

❑❑ Apache supports security by specifying active ports through the Listen and
VirtualHost directives.

❑❑ Apache supports host-based security by IP address or domain name.
❑❑ Apache supports user-based security by password, with the help of the htpasswd

command.

Specialized Apache Directories
❑❑ Apache makes it easy to set up access to user home directories in their public_html/

subdirectories.
❑❑ Group-managed directories can be configured in a fashion similar to user home

directories.

Regular and Secure Virtual Hosts
❑❑ You can configure multiple websites on your server, even with only one IP address.

This is possible through the use of virtual hosts.
❑❑ The RHEL configuration supports virtual hosts for regular and secure websites,

usually set up in their own configuration files within the /etc/httpd/conf.d directory.
❑❑ The RHEL configuration includes a default secure virtual host in the

/etc/httpd/conf.d/ssl.conf file.
❑❑ SSL certificates can be created with the genkey command.

Deploy a Basic CGI Application
❑❑ The use of CGI content depends on configuration options such as ScriptAlias,

ExecCGI, and AddHandler cgi-script.
❑❑ Standard CGI scripts need to be executable by the Apache user. If needed, sample

instructions are provided in the Apache manual available from the httpd-manual
package.

Self Test  725

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear
in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

The Apache Web Server

1.	 What is the Apache directive that specifies the base directory for configuration and log files?
__

2.	 Once you’ve modified httpd.conf, what command would make Apache reread this file, without
kicking off currently connected users?
__

3.	 What directive specifies the TCP/IP port associated with Apache?
__

Standard Apache Security Configuration

4.	 What command creates the /etc/httpd/passwords file and configures a password for user
elizabeth?
__

5.	 If you see the following directives limiting access within the container for a virtual host, what
computers are allowed access?

Order Allow,Deny
Allow from 192.168.0.0/24

__
6.	 What standard services do you need to open in FirewallD to allow access to a regular website and

a secure one?
__

726  Chapter 14  The Apache Web Server

Specialized Apache Directories

7.	 What regular permissions would work with a home directory that’s shared via Apache?

8.	 What regular permissions would work with a shared group directory that’s also shared
via Apache?
__

Regular and Secure Virtual Hosts

9.	 What file does RHEL provide to help configure a virtual host as a secure server?
__

10.	 If you’re creating a name-based virtual host, how many IP addresses would be required for three
virtual servers?
__

11.	 To verify the configuration of one or more virtual hosts, what switch can you use with the httpd
command?
__

Deploy a Basic CGI Application

12.	 What option with the Options directive supports dynamic CGI content in an Apache
configuration file?
__

LAB QUESTIONS
Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’s assumed that you’re running these exercises on virtual machines such as KVM. For this
chapter, it’s also assumed that you may be changing the configuration of a physical host system for such
virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this and future chapters are
available from the media that accompanies the book, in the Chapter14/ subdirectory. In case you
haven’t yet set up RHEL 7 on a system, refer to Chapter 1 for installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

Self Test Answers  727

SELF TEST ANSWERS

The Apache Web Server

1.	 The ServerRoot directive sets the default directory for the Apache server. Any files and
directories not otherwise configured—or configured as a relative directory—are set relative to
ServerRoot.

2.	 There are two basic ways to make Apache reread the configuration file without restarting the
service. You can keep Apache running and make it reread the file with a command such as
apachectl graceful or systemctl reload httpd. The kill -HUP $(cat /run/httpd/httpd.pid)
command is also an acceptable answer.

3.	 The Listen directive specifies the TCP port associated with Apache.

Standard Apache Security Configuration

4.	 The command that creates the /etc/httpd/passwords file and configures a password for user
elizabeth is htpasswd -c /etc/httpd/passwords elizabeth. If /etc/httpd/passwords already exists,
all that’s required is htpasswd /etc/httpd/passwords elizabeth.

5.	 As described in the chapter, the Order Allow,Deny directive denies access to all systems by
default, except those explicitly allowed access. Therefore, access is limited to computers on the
192.168.0.0/24 network.

6.	 The standard services you need to open in FirewallD to allow access to regular and secure
websites are http and https.

Specialized Apache Directories

7.	 The associated permissions are 701, executable permissions for other users. As “regular
permissions” are specified, ACLs are not an option.

8.	 The associated permissions are 2771, which combine SGID permissions, rwx permissions for a
shared group directory, and executable permissions for other users. As “regular permissions” are
specified, ACLs are not an option.

728  Chapter 14  The Apache Web Server

Regular and Secure Virtual Hosts

9.	 The file associated with secure servers for virtual hosts is ssl.conf in the /etc/httpd/conf.d directory.
10.	 One IP address is required for a name-based virtual server, no matter how many virtual sites are

configured.
11.	 To check your configuration of virtual hosts, you can use one of two switches with the httpd

command: httpd -S checks the configuration file, including virtual host settings. Alternatively,
httpd -D DUMP_VHOSTS focuses on the virtual host configuration, and is therefore also an
acceptable answer.

Deploy a Basic CGI Application

12.	 The Options ExecCGI directive is commonly used in Apache-configured directories that contain
CGI scripts such as Perl programs.

LAB ANSWERS

Lab 1
First, make sure the Apache web server is installed. If an rpm -q httpd command tells you that it is
missing, the Web Server package group has not yet been installed. The most efficient way to do so is with
the yum group install “Web Server” command. (To find appropriate package group names, run the
yum group list hidden command.) This assumes a proper connection to a repository, as discussed in
Chapter 7.

To start Apache, run the systemctl start httpd command. To make sure it starts the next time the
system is booted, run the systemctl enable httpd command.

Once Apache is installed, you should be able to access it from a browser via http://localhost. From
the default Apache configuration file, you can verify that the DocumentRoot points to the /var/www/
html directory. You can then copy the index.html file from the /usr/share/doc/HTML/en-US directory to
the /var/www/html directory. Then you can test the result by navigating once again to http://localhost.
If you did not copy the other files associated with the default home page, the display will be missing
some icons, but that’s not an issue for this lab.

Lab 2
This is an informational lab. When it is complete, you should be able to refer to these Apache configuration
hints in situations where this book and the Internet are not available, such as during a Red Hat exam.

Of course, you should study these tips in advance. If you forget the syntax of one or two commands,
these files can be a lifesaver.

Lab Answers  729

Lab 3
This lab requires that you create two virtual hosts. While there are certainly other methods to set up
different virtual hosts, the description in this lab answer is one method—and it is important that you know
at least one method to create a virtual host. One way to make this happen is with the following steps:

1.	 The ServerRoot directive for the system sets the default directory for the Apache server. Any
files and directories not otherwise configured—or configured as relative paths—are set relative
to ServerRoot. Don’t change this setting.

2.	 In the /etc/httpd/conf.d directory, create two files named vhost-big.conf and vhost-small.conf
for the configuration of the two virtual hosts.

3.	 Add a separate VirtualHost containers with settings appropriate for the big.example.com
virtual host.

4.	 Assign the ServerAdmin to the e-mail address of this website’s administrator.
5.	 Configure a unique DocumentRoot directory for big.example.com.
6.	 Set the first ServerName to big.example.com.
7.	 Add ErrorLog and CustomLog directives and set them to unique filenames in the /etc/httpd/logs

directory (which is linked to the /var/logs/httpd directory). With the default ServerRoot, you
can use a relative path such as the following:

ErrorLog logs/big.example.com-error.log
CustomLog logs/big.example.com-access.log combined

8.	 Make sure to close the VirtualHost container (with a </VirtualHost> directive at the end of the
container).

9.	 Add a <Directory> container to grant access to the directory that you have configured as the
DocumentRoot:

<Directory "/srv/vhost-big/www">
 Require all granted
</Directory>

10.	 Repeat the process for the second website, making sure to set the second ServerName to
small.example.com.

11.	 Close and save the configuration files with your changes.
12.	 Create any new directories that you configured with the DocumentRoot directives.
13.	 Create index.html text files in each directory defined by the associated new DocumentRoot

directives. Don’t worry about HTML code; a text file is fine for the purpose of this lab.
14.	 Make sure these domain names are configured in a local DNS server or in the /etc/hosts file.

For example, if the Apache server is on a system with IP address 192.168.122.150 (such as tester1
.example.com), you could add the following lines to /etc/hosts:

192.168.122.150 big.example.com
192.168.122.150 small.example.com

	 The same data should be included in the /etc/hosts file of a remote client system.

730  Chapter 14  The Apache Web Server

15.	 Use the firewall-cmd utility to allow HTTP data through the firewall:

firewall-cmd --permanent --add-service=http
firewall-cmd --reload

16.	 You may need to configure appropriate SELinux file contexts on the directory associated with
the DocumentRoot. For example, if that directory is /vhost-big, one way to do so is with the
following commands:

semanage fcontext -a -t httpd_sys_content_t '/vhost-big(/.*)?'
restorecon -R /vhost-big

	 Note that the first command is not required if you have set the DocumentRoot to a directory
that the SELinux policy marks with the httpd_sys_content_t type by default, such as /srv/
vhost-big/www. In fact, the /srv/*/www directories have their default context type already set to
httpd_sys_content_t. If in doubt, check the settings of the SELinux policy by running semanage
fcontext -l | grep httpd_sys_content_t.

17.	 Make sure to run the systemctl reload httpd command to make Apache reread its
configuration files, with the changes you’ve made.

18.	 Now you can test the results. Navigate to a remote system and try to access the newly created
websites in the browser of your choice. If it works, the big.example.com and small.example.com
domain names should display the index.html files created for each website.

19.	 If there are problems, check the syntax with the httpd -t and httpd -S commands. Check the log
files in the /var/log/httpd directory.

Lab 4
This lab should be straightforward; when it is complete, you should find the following two files, which
can be used to support a virtual host for a secure version of the big.example.com website:

/etc/pki/tls/certs/big.example.com.crt
/etc/pki/tls/private/big.example.com.key

Corresponding files for the small.example.com system should also now exist in these directories. The
process is based on standard responses to the questions generated by the genkey big.example.com and
genkey small.example.com commands.

Lab 5
The basics of this lab are straightforward. You’ll need to repeat the same steps that you performed in
Lab 3 and use the certificate and key files created in Lab 4. You can use the contents of the /etc/httpd/
conf.d/ssl.conf file as a template. In addition, you should be concerned about the following:

1.	 While not absolutely required, you may want to set up the DocumentRoot in a directory
different from a regular web server. Otherwise, the same web page will appear for both the
regular and secure versions of a website.

Lab Answers  731

2.	 It’s a good practice to configure the ErrorLog and CustomLog with appropriate filenames to
help identify that information is from the secure version of a given website.

3.	 It’s helpful to copy the SSL directives from the template SSL virtual host in the ssl.conf file.
All directives can apply to the secure versions of the big.example.com and small.example.com
websites. You need at the minimum to set a ServerName directive, turn on SSLEngine, and set
proper paths to SSLCertificateFile and SSLCertificateKeyFile:

ServerName big.example.com
SSLEngine On
SSLCertificateFile /etc/pki/tls/certs/big.example.com.crt
SSLCertificateKeyFile /etc/pki/tls/private/big.example.com.key

Of course, you’d substitute small.example.com for big.example.com for the noted
directives in the secure virtual host container for that website. Don’t forget to add the https
service to the default zone on the firewall:

firewall-cmd --permanent --add-service=https
firewall-cmd --reload

Lab 6
In the default conf.d/userdir.conf file, the configuration of user home directories requires that you
enable the UserDir directive. You can then customize the commented container associated with user
home directories. If successful, only one user is allowed access to his home directory through the
Apache web server from a client browser. In general, you may see directives such as the following within
the container for the given home page:

AuthType Basic
AuthName "Just for one user"
AuthUserFile /etc/httpd/oneuser
Require user michael

As suggested in the chapter, the home directory should have regular executable permissions for
other users, or at least for the user named apache, through ACLs. In addition, access won’t be allowed
unless you’ve set the httpd_enable_homedirs SELinux boolean. You’ll also need to set up user michael
in the authentication database for this directory with the htpasswd -c /etc/httpd/oneuser michael
command.

Lab 7
The process required to set up a group-managed directory is a hybrid. The overall basic steps are as follows:

1.	 Create a regular user and group named techsupport. While not required, it can be helpful to configure
that user with a higher UID and GID to avoid interfering with other future users and groups.

2.	 Make the other users a member of that group named techsupport.

732  Chapter 14  The Apache Web Server

3.	 Create a public_html/ subdirectory of the new user’s home directory.
4.	 Set up appropriate permissions to support access by members of the techsupport group,

normally 2770 permissions. The new techsupport’s home and public_html directories should
have either regular executable permissions by other users or executable permissions by the user
named apache configured in an ACL.

5.	 Set up an index.html file in the public_html directory. It should be set with ownership by the
techsupport group.

6.	 You will need to configure basic authentication for the group in Apache. Don’t forget to set up
the group in the authentication database for this directory with the htpasswd command.

Lab 8
The specified hello.pl script should include something like the following entries:

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "Hello World";

That script should be located in the directory specified by a ScriptAlias /cgi-bin/ directive in the
big.example.com virtual host container.

As an alternative configuration, you can create a new <Directory> block for the CGI directory. That
container should include the Options ExecCGI and AddHandler cgi-script .pl directives. You may also
need to disable the default ScriptAlias directive in httpd.conf. Although it’s normally best to have scripts
in a different directory than the DirectoryRoot tree configured for a virtual host, it’s not required.

In addition, the permissions on the hello.pl file should be set to 755, and the SELinux contexts on
the file (and directory) should be of the httpd_sys_script_exec_t file type. Of course, you’ll have run an
appropriate semanage fcontext -a command to make the change permanent. In any case, a successful
result is as suggested in the lab question.

	__DdeLink__5664_302604908

