
Chapter 12
RHCE Administrative
Tasks

12.01	 Automate System Maintenance

12.02	 Set Up System Utilization Reports

12.03	 Kernel Run-time Parameters

12.04	 IP Routes

12.05	 An Introduction to IPv6

12.06	 Network Interface Bonding
and Teaming

12.07	 Authentication with Kerberos

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

The automation of system maintenance is an objective for both the RHCSA and RHCE
exams. For the RHCE, you need to know how to create a shell script. You’ll study some
sample scripts used on RHEL 7 to automate system maintenance. You can automate those

scripts on a schedule: hourly, daily, or even weekly.

Linux system utilization reports are associated with the sar command, which is
configured as a cron job. Once you have identified the most utilized system resources,

580  Chapter 12  RHCE Administrative Tasks

you can tune a system. This process starts from the Linux kernel, which is highly customizable.
With different run-time parameters configured in the /proc/sys directory, kernels can be tuned
to meet the needs of your applications.

The RHCE objectives also include a number of additional network requirements. You need
to know how to set up static routes and configure IPv6. You will also learn how to configure
network teaming and to provide bandwidth aggregation and link redundancy from multiple
network interfaces. Finally, you should know how to set up a system as a Kerberos client.

INSIDE THE EXAM

This chapter directly addresses seven RHCE
objectives. The first is an essential skill for
systems administration; specifically, to

■■ Use shell scripting to automate system
maintenance tasks

Shell scripts combine a series of commands
in a single executable file. Automated scripts
are normally run on a regular schedule, which
the cron daemon is perfectly designed to
handle.

System utilization reporting is an important
skill for all computer professionals. RHEL 7
includes the sysstat package for such reports.
The related objective is

■■ Produce and deliver reports on system
utilization (processor, memory, disk,
and network)

As this is not a traditional network service,
there is no need to configure a firewall. There
are no current SELinux-related booleans.

Some Linux tuning tasks can be met
through kernel run-time parameters. That’s

made possible by the virtual files in the
/proc/sys directory and by the sysctl
command. The corresponding objective is

■■ Use /proc/sys and sysctl to modify and
set kernel run-time parameters

This chapter also addresses several
network tasks from the RHCE objectives. The
configuration of static routes, as described in
the following objective, is an essential task in
enterprise networking:

■■ Route IP traffic and create static routes

Now that we are running out of IPv4
addresses, the RHCE for RHEL 7 includes a
related objective:

■■ Configure IPv6 addresses and perform
basic IPv6 troubleshooting

In an enterprise network, it is common
to aggregate multiple network interfaces
for increased resiliency or higher through-
put. In RHEL 7, you can aggregate multiple

INSIDE THE EXAM

Automate System Maintenance  581

CERTIFICATION OBJECTIVE 12.01

Automate System Maintenance
As discussed in Chapter 9, RHEL 7 includes standard system maintenance scripts,
scheduled by the /etc/crontab and the /etc/anacrontab configuration files, as well as
various files in the /etc/cron.* directories. In this chapter, you’ll analyze some scripts and
some related bash internal commands. You’ll then have the skills you need to create basic
administrative scripts.

Standard Administrative Scripts
Review the scripts in the /etc/cron.daily directory, starting with rhsmd, part of Red
Hat Subscription Manager. It logs information about the current entitlement status of
the system. That script has two lines. Normally, lines that start with the hash symbol (#)
are comments. The first line starts with a “shebang” (#!), followed by /bin/sh, which is a
standard first line for bash scripts. On RHEL 7, since /bin/sh is symbolically linked to
/bin/bash, it tells RHEL 7 to interpret the commands that follow with the bash shell:

#!/bin/sh

network interfaces either through interface
bonding or network teaming, as addressed by
the following objective:

■■ Use network teaming or bonding to
configure aggregated network links
between two Red Hat Enterprise Linux
systems

For the final objective in this chapter,
you will learn to configure a RHEL 7 system
as a Kerberos client. Kerberos provides
secure authentication services on insecure

networks. For the RHCE exam you must
be able to

■■ Configure a system to authenticate
using Kerberos

To prepare for these requirements, you will
learn to configure a Kerberos Key Distribution
Center (KDC). For a more detailed back-
ground about Kerberos, refer to the Red Hat
System-Level Authentication Guide, available
at https://access.redhat.com/Documentation/
en-US/Red_Hat_Enterprise_Linux/7.

582  Chapter 12  RHCE Administrative Tasks

Some Linux distributions (not Red Hat) link the /bin/sh command to a shell other
than bash. Unless #!/bin/bash is specified in the script, it may not be transferable
to other distributions.

The second line runs the rhsmd command, logging all results (-s) to syslog:

/usr/libexec/rhsmd -s

Next, examine the contents of the /etc/cron.daily directory. A slightly more complex
script is logrotate. A copy of the script is shown in Figure 12-1.

The script starts with a shebang and the path of the program interpreter that will parse
the rest of the script:

#!/bin/sh

The next line in the file is executed automatically. The logrotate command rotates logs
as defined in the /etc/logrotate.conf file, described in Chapter 9:

/usr/sbin/logrotate /etc/logrotate.conf

The following line assigns the exit value returned by the last command to a variable
named EXITVALUE:

EXITVALUE=$?

If the logrotate command is successful, EXITVALUE is set to 0.
The next if command starts a conditional statement. The != character sequence means

“not equal.” Therefore, the following if conditional is true when the value of EXITVALUE is
something other than 0:

if [$EXITVALUE != 0]; then

If EXITVALUE is not 0, bash executes the commands inside the if conditional, which
tells the administrator that there is a problem with the logrotate script or related log files.

/usr/bin/logger -t logrotate "ALERT exited abnormally with [$EXITVALUE]"

	 FIGURE 12-1	  

The logrotate
script

Automate System Maintenance  583

The fi command that follows ends the conditional statement. The last directive returns 0,
an indication of success:

exit 0

With this introduction to scripts, you are ready to examine some bash variables and
commands.

Bash Variables
You can use variables in bash to store data. Although it’s common to write variable names in
uppercase letters, you cannot start a variable name with a number.

The following example illustrates how you can assign a variable from the command line:

today=4

Take care when assigning a variable to not add spaces around the equal (=) character. To
display the value of a variable, use the echo command and add a dollar sign in front of the
variable:

echo $today
4

You can also add braces around the variable name to avoid ambiguous expressions. For
example, without braces, the following command would retrieve the value of the variable
$todayth, rather than $today:

echo "Today is the ${today}th of June"
Today is the 4th of June

You can use variables as part of arithmetic expressions. In bash, arithmetic expressions
are enclosed in the $((expression)) syntax. Here’s an example:

tomorrow=$(($today + 1))
echo "Tomorrow is the ${tomorrow}th of June"
Tomorrow is the 5th of June

But there’s more. Variables can also store the output of a command. There are two ways
to do so: using the $(command) syntax and with backticks `command`. Here’s an example
of each:

day=$(date +%d)
month=`date +%b`
echo "The current date is $month, $day"
The current date is Jun, 29

584  Chapter 12  RHCE Administrative Tasks

Bash Commands
Scripts are filled with various command constructs. Some groups of commands are
executed only if a condition is met. Others are organized in a loop, which continues to
run as long as a condition is satisfied. These command constructs are also known as
conditional and control structures. Common commands include for, if, and test. The end of
a loop may be labeled with a keyword such as done or fi. Some commands only exist in the
context of others, which will be described in the subsections that follow.

Test Operators with if
The if operator is primarily used to check if a condition is met, such as if a file exists. For
example, the following command checks if the /etc/sysconfig/network file exists and is a
regular file:

if [! -f /etc/sysconfig/network]; then

The exclamation mark (!) is the “not” operator and negates the result of the test. The
-f checks to see if the filename that follows is a currently existing regular file. Test operators
are very common in bash shell scripts. Some of these operators are listed in Table 12-1.

Operator Description

STRING1 = STRING2 True if the two strings are equal
STRING1 != STRING2 True if the two strings are not equal
INTEGER1 -eq INTEGER2 True if the two integers are equal
INTEGER1 -ne INTEGER2 True if the two integers are not equal
INTEGER1 -ge INTEGER2 True if INTEGER1 is greater than or equal to INTEGER2
INTEGER1 -gt INTEGER2 True if INTEGER1 is greater than INTEGER2
INTEGER1 -le INTEGER2 True if INTEGER1 is less than or equal to INTEGER2
INTEGER1 -lt INTEGER2 True if INTEGER1 is less than INTEGER2
-d FILE True if FILE is a directory
-e FILE True if FILE exists
-f FILE True if FILE exists and is a regular file
-r FILE True if FILE exists and is granted read permissions
-w FILE True if FILE exists and is granted write permissions
-x FILE True if FILE exists and is granted execute permissions

	 TABLE 12-1	   Test Operators for bash Scripts

Automate System Maintenance  585

	 FIGURE 12-2	  

The 0anacron
script

The if operator normally is associated with a then, and possibly an else operator. For
example, take the following hypothetical block:

if [-e /etc/fstab];
then
 cp /etc/fstab /etc/fstab.bak
else
 echo "Don't reboot, /etc/fstab is missing!"
fi

In this code, if the /etc/fstab file exists (courtesy of the -e), the command associated with
the then operator is run. If that file is missing, the noted message is displayed.

An Example: The 0anacron Script
We summarized the intent of the 0anacron script in Chapter 9, but you’ll analyze it in detail
here. You can find the script in the /etc/cron.hourly directory. A copy of the script is shown
in Figure 12-2.

The script starts with a shebang line, which tells Linux that this is a bash script. Then,
there is the following if block:

if test -r /var/spool/anacron/cron.daily; then
 day=`cat /var/spool/anacron/cron.daily`
fi

The test operator is sometimes used as a conditional within the if. For example, the line

if test -r /var/spool/anacron/cron.daily;

586  Chapter 12  RHCE Administrative Tasks

is functionally equivalent to

if [-r /var/spool/anacron/cron.daily];

This if block verifies whether the file /var/spool/anacron/cron.daily exists and is readable.
If the test is successful, the content of the cron.daily file is saved into the day variable. In fact,
the cron.daily file contains the last date (in YYYYMMDD format) that anacron was run.

The next lines contain another if block:

if [`date +%Y%m%d` = "$day"]; then
 exit 0
fi

This code compares two strings: the current date, as returned by the date command in
YYYYMMDD format (note the backticks, to substitute the output of the date command
as the first operand in the test comparison), and the content of the day variable. As a good
practice, the name of the day variable is enclosed in double quotes to prevent any special
characters within the quoted string, apart from the dollar sign, to be interpreted by bash.

If the two dates are equal, the script exits immediately with a value of 0, indicating no
errors. In other words, if anacron was already run today, the content of the
/var/spool/anacron/cron.daily file would include today’s date. In this case, the script won’t
run a second time and will exit with a value of 0.

The next section of code contains two nested if blocks:

if test -x /usr/bin/on_ac_power; then
 /usr/bin/on_ac_power >/dev/null 2>&1
 if test $? -eq 1; then
 exit 0
 fi
fi

The first if instruction checks if the /usr/bin/on_ac_power file exists and is executable. If
so, it runs the program and suppresses all its output by redirecting the standard output and
standard error to /dev/null. As indicated in the man page of on_ac_power, this command
returns an exit code of 0 if the system is on line power, and 1 otherwise.

Next, the script checks the exit code ($?) of the last command. If this is 1 (that is, if the
system is not on AC power), the scripts exits with a value of 0.

Finally, if all the previous tests are passed, the script runs the anacron command:

/usr/bin/anacron -s

In turn, anacron will read a list of jobs from /etc/anacrontab and execute them in sequential
(-s) order.

Automate System Maintenance  587

The for Loop
The for loop executes a list of commands for all the items specified in a list. It’s fairly simple
and has different forms. In the following example, the command in the for loop is executed
three times, for each value of the variable n in the list 1, 2, 3:

for n in 1 2 3; do
 echo "I love Linux #$n"
done

The output of the previous snippet of code is

I love Linux #1
I love Linux #2
I love Linux #3

A different example exists within the certwatch script in the /etc/cron.daily directory. If
you don’t see it on your system, install the crypto-utils package.

Here, the list in the for loop is replaced by the value of a variable:

for c in $certs; do
 # Check whether a warning message is needed, then issue one if so.
 /usr/bin/certwatch $CERTWATCH_OPTS -q "$c" &&
 /usr/bin/certwatch $CERTWATCH_OPTS "$c" | /usr/bin/sendmail -oem
 -oi -t 2>/dev/null
done

The $certs variable contains a list of all the certificate files used by the Apache web
server. The for goes through each certificate and checks whether it is about to expire. If so,
it sends an alert.

Note the && operator between the two certwatch commands. It tells bash to execute the
second command only if the first is successful (that is, if it returns a state of 0).

A more complex example is shown next. The for loop is executed for all the users in the
system, as returned by the getent passwd command:

for username in $(getent passwd | cut -f 1 -d ":"); do
 usergroups=$(groups $username | cut -f 2 -d ":")
 echo "User $username is a member of the following groups: $usergroups"
done

In the first line, the getent passwd command returns all the users in the system. This
may include users defined locally in /etc/passwd, as well as users defined in a central
directory service such as LDAP. The output of the command is truncated to the first column
(-f 1), defined by a separator character (-d ":"). This gives a list of usernames that the for
loop can cycle through and assign to the username variable at each iteration.

588  Chapter 12  RHCE Administrative Tasks

Then, the previous code snippet executes the groups command, with each username
as an argument. This command returns the groups that a user is part of, in the following
format:

user : group1 group2 ...

The cut -f 1 -d ":" command extracts all the output after the column separator, and
the result is saved in the usergroups variable. Finally, the result is displayed by the echo
command.

Script Arguments
You can use arguments to pass information to a script, in the same fashion that you would
do with normal commands. In a bash script, the first command argument is saved in the
special variable $1, the second in $2, and so forth. The total number of arguments is saved
in the $# special variable. As an example, consider the following script:

#!/bin/bash
echo "The number of arguments is $#"
if [$# -ge 1]; then
 echo "The first argument is $1"
fi

 Save the code in a file named args.sh and make it executable with the chmod +x args.sh
command. Then, run the program as shown:

./args.sh orange

You should see the following output:

The number of arguments is 1
The first argument is orange

In Exercise 12-1, you will have a chance to put these lessons into practice.

EXERCISE 12-1

Create a Script
In this lab, you’ll create a script named get-shell.sh. The script takes a username as the first
argument and displays the default shell of the indicated user, using the following format:

./get-shell.sh mike
mike's default shell is /bin/bash

Automate System Maintenance  589

If no argument is provided, the script must display the default shell of the current user. If
more than one argument is given, the script must print the following error message and exit
with a value of 1:

Error: too many arguments

If the user given as an argument does not exist, the script must display the following
error message and exit with a value of 2:

Error: cannot retrieve information for user <user>

1.	 Create a file named get-shell.sh and assign execute permissions to that file:

$ touch get-shell.sh
$ chmod +x get-shell.sh

2.	 Open the file with your favorite editor. Start the script with the following line:

#!/bin/sh

3.	 Add the following lines that check if the number of arguments ($#) is greater than
one. If so, print an error message and exit with a value of 1:

if [$# -gt 1]; then
 echo "Error: too many arguments"
 exit 1
fi

4.	 Add the lines that follow. If no arguments have been passed, the script saves the
name of the current user ($USER) in the username variable. Otherwise, the
username variable takes the value of the first argument ($1). To express this logic,
we use the if-then-else construct:

if [$# -eq 0]; then
 username=$USER
else
 username=$1
fi

5.	 Retrieve the user’s information. You can query the user database with the getent passwd
command. This command returns user information from the local /etc/passwd file and
from any configured directory systems:

userinfo=$(getent passwd $username)

6.	 Check the exit value of the previous command. Any nonzero exit value means that
an error has occurred. If so, exit the program immediately with an exit status of 2:

if [$? -ne 0]; then
 echo "Error: cannot retrieve information for user $username"
 exit 2
fi

590  Chapter 12  RHCE Administrative Tasks

7.	 Extract the user’s shell from the userinfo variable. This is the seventh field (-f 7) of
/etc/passwd, where each field is separated by a column character (-d ":"):

usershell=$(echo $userinfo | cut -f 7 -d ":")

8.	 Print the result. As a good practice, exit with a value of 0 to indicate that no errors
have occurred:

echo "$username's shell is $usershell"
exit 0

9.	 Save your changes. Execute the script with different arguments to test every possible
condition:

$./get-shell.sh alex
alex's shell is /bin/bash
$./get-shell.sh mike
mike's shell is /bin/bash
$./get-shell.sh daemon
daemon's shell is /sbin/nologin
$./get-shell.sh mikes
Error: cannot retrieve information for user mikes
$./get-shell.sh alex mike
Error: too many arguments

CERTIFICATION OBJECTIVE 12.02

Set Up System Utilization Reports
As an administrator, it’s helpful to know when a system is overloaded. To help you, RHEL 7
includes the sysstat package. In addition, there are other commands related to measuring
system utilization—specifically top. Of course, you can identify current disk usage with
commands such as df and fdisk. Once system utilization reports are collected, you can
review the results to help identify times when a system is in heavier use.

To paraphrase the relevant RHCE objective, there are other important commands that
can help you “produce and deliver reports” on the load on the CPU, RAM, hard drives,
and the network. While they collect data similar to commands such as top, df, and fdisk,
the commands associated with the sysstat package collect such data on each of the noted
components. Performance data is collected in log files. Then, the sadf command is designed
to actually use that log data to prepare a report. When written to an appropriate text or
database file, such reports can then be delivered for evaluation and processing.

Set Up System Utilization Reports  591

System Utilization Commands
Basic system utilization commands are already available for Linux. For example, the top
command provides a current view of three important items: CPU, RAM, and processes.
Examine the output of the top command, shown in Figure 12-3. Current CPU, RAM, and
swap space use is shown atop the display; currently running processes are shown below
the bar. Processes that take a lot of CPU and RAM are shown first. By default, the view is
refreshed every three seconds.

Alternatively, there’s the dstat command, part of the dstat package. As shown in Figure 12-4,
it lists a variety of statistics, refreshed every second. The one item added here relative to the
top command is network traffic, which can help you view current network usage.

Of course, these are real-time statistics and something that you can’t stare at all the time.
That’s the reason behind the System Activity Report tool, or sar.

The System Activity Report Tool
To set up the System Activity Report tool, install the sysstat package. The package includes a
systemd service, as well as a cron job that runs on a regular basis, as defined in the

	 FIGURE 12-3	   The top command displays system utilization.

592  Chapter 12  RHCE Administrative Tasks

/etc/cron.d/sysstat file. The package also contains a series of related commands, which are
covered here.

The commands that are part of sysstat use the parameters shown in the sysstat and
sysstat.ioconf files, in the /etc/sysconfig directory. The sysstat file is relatively simple; the
following directive specifies that log files should be kept for 28 days:

HISTORY=28

And this directive specifies that log files that are more than 31 days old should be
compressed:

COMPRESSAFTER=31

Of course, that means that log files are erased before they can be compressed. Naturally,
you can change either variable as needed. The meaty /etc/sysconfig file is sysstat.ioconf
because it helps collect activity data from a variety of storage devices. It helps some of the
commands of the sysstat package collect data from disk devices. While the sysstat.ioconf
file is large, changes should not be required to that file unless there’s new disk storage
hardware—and the Red Hat exams are not hardware exams.

Collect System Status into Logs
The sysstat package includes a regular cron job. Available in the /etc/cron.d directory,
that job collects information on system utilization and sends it to log files in the /var/log/sa

	 FIGURE 12-4	  

The dstat
command displays
system utilization.

Set Up System Utilization Reports  593

directory. Examine the sysstat file in the /etc/cron.d directory. The first line defines a job
that’s run every 10 minutes by the root administrative user:

*/10 * * * * root /usr/lib64/sa/sa1 1 1

The sa1 command, with the 1 and 1 at the end, specifies that the command should run
once, one second after the job is started. Information from this command is collected in the
file named sadd in the /var/log/sa directory, where dd represents the day of the month.

The next line is more powerful than it looks. On a daily basis, at seven minutes before
midnight, with the privileges of the root administrative user, the sa2 command writes a daily
report on most system activity.

53 23 * * * root /usr/lib64/sa/sa2 -A

The -A switch is associated with the sar command. As suggested by the following excerpt
from the sar man page, it essentially collects every reasonable bit on system utilization:

-A This is equivalent to specifying -bBdqrRSuvwWy
-I SUM -I XALL -n ALL -u ALL -P ALL.

Prepare a System Status Report
This section will not prepare a report for a presentation. It’s simply an analysis of the sadf
command and how it can be used to specify information to filter from the log files in the
/var/log/sa directory. The binary log files with names such as sa10 (for the 10th day of the
month) can be processed in a number of ways by the sadf command. Some of the more
important sadf switches are listed in Table 12-2.

For example, the following command sets up a report with data between the start and
end of the 10th of the month:

sadf -s 00:00:01 -e 23:59:59 /var/log/sa/sa10 > activity10

The data is redirected to the activity10 file for later processing. But the power of the
sysstat package comes from the way it interacts with the sar command. However, only some
of the options of the sar command work with sadf. As suggested in the sadf man page,
the following command prepares a report based on “memory, swap space, and network
statistics” from the /var/log/sa/sa21 file in a format that can be processed by a database:

sadf -d /var/log/sa/sa21 -- -r -n DEV

594  Chapter 12  RHCE Administrative Tasks

While the -d switch is associated with the sadf command, the double-dash (--) points to
options associated with the sar command. So the -r switch reports memory usage, and
-n DEV reports statistics from network devices.

The sadf man page is an excellent reference for the command options required to create
a report while on the job, or even during a Red Hat exam. As with many other commands,
you can find examples in the EXAMPLES section of the man page.

Of course, there are other important sar command switches. Those that may be relevant
when you prepare a report on “processor, memory, disk, and network” utilization are
described in Table 12-3.

With the switches listed in Table 12-3, you might modify the previous sadf command to
meet all four items listed in the related RHCE objective:

sadf -d /var/log/sa/sa21 -- -u -r -dp -n DEV

Switch Description

-d Displays contents in a format usable by a relational database system.
-e hh:mm:ss Lists the end time of the report in 24-hour format.
-p Displays contents in a format usable by the awk command; do not use with -d or -x.
-s hh:mm:ss Lists the start time of report in 24-hour format.
-x Displays contents in XML format; do not use with -d or -p.

	 TABLE 12-2	   Options for the sadf Command

Switch Description

-d Lists block device activity. Normally used with -p to specify common drive device
filenames such as sda and sdb.

-n DEV Reports statistics from network devices.
-P cpu Lists statistics on a per-processor (or core) basis; for example, -P 0 specifies the first CPU.
-r Reports memory utilization statistics.
-S Shows swap space utilization statistics.
-u Reports CPU utilization, including categories related, user, system and idle time, and more.
-W Reports swapping statistics.

	 TABLE 12-3	   System Utilization Options for the sar Command

Kernel Run-time Parameters  595

In other words, the sadf command specifies output usable by a database (-d) from the
database file in the /var/log/sa directory associated with the 21st of the month. The double
dash (--) points to sar command switches, with CPU utilization (-u), RAM utilization (-r),
and activity by block device (-d) presented in more familiar block device names such as sda
(-p), and with statistics from network devices (-n DEV).

CERTIFICATION OBJECTIVE 12.03

Kernel Run-time Parameters
Kernel run-time parameters, as defined in the RHCE objectives, relate to files in the /proc/sys
directory and the sysctl command. Closely related is the /etc/sysctl.conf configuration file,
which is used by the sysctl command during the boot process to tune parameters to various
files in the /proc/sys directory. Therefore, it’s appropriate to start this section with a look at
that sysctl.conf file.

How sysctl Works with /etc/sysctl.conf
You can enable IPv4 forwarding in two steps. First, add the following boolean directive to
activate IPv4 forwarding in the configuration:

net.ipv4.ip_forward = 1

Then make the system re-read the configuration file with the following command:

sysctl -p

Let’s examine this process in a bit more detail. First, kernel run-time parameters are
documented in various files in the /proc/sys directory. The content of the net.ipv4
.ip_forward variable is stored in the ip_forward file, in the net/ipv4/ subdirectory. In other
words, IPv4 forwarding is documented in the ip_forward file, in the /proc/sys/net/ipv4
directory.

As that file contains either a 0 or a 1, it is a boolean variable. So the value 1 for the
net.ipv4.ip_forward variable activates IPv4 forwarding.

What if you want to add IPv6 forwarding? While that’s not configured in the /etc/sysctl.conf
file, it’s a feature that you can add. IPv6 forwarding can be set in a file named forwarding, in
the /proc/sys/net/ipv6/conf/all directory. In other words, to set IPv6 forwarding on reboot,
you’d include the following directive in /etc/sysctl.conf:

net.ipv6.conf.all.forwarding=1

596  Chapter 12  RHCE Administrative Tasks

Similar directives would work for other settings associated with files in the /proc/sys
directory. Look at the icmp_* directives in the /proc/sys/net/ipv4 directory. You might
recognize that the Internet Control Message Protocol (ICMP) is sometimes associated
with the ping command. In fact, a ping command is a request for an echo. Thus,
icmp_echo_ignore_all and icmp_echo_ignore_broadcasts relate to a direct ping
command, as well as a ping command associated with the broadcast address.

In other words, if you add the directives

net.ipv4.icmp_echo_ignore_all = 1
net.ipv4.icmp_echo_ignore_broadcasts = 1

to the /etc/sysctl.conf file, the local system won’t respond to a direct ping command, nor
will it respond to a request made by a ping to the broadcast address for the network.

Settings in the /etc/sysctl.conf File
The settings in the /etc/sysctl.conf file are a small fraction of what can be configured. In
RHEL 7, /etc/sysctl.conf contains only comments, while the default configuration has been
moved to files within the /usr/lib/sysctl.d directory. Have a look at those files. It’s fair to
assume that RHEL 7 includes the options in those files for a reason, and those settings are
most likely to be addressed in a RHCE exam. You’ve already examined the first directive for
IPv4 forwarding. The next directive is included in the 50-default.conf file in the /usr/lib/
sysctl.d directory. If active, it makes sure that packets that come in from an external
network are in fact external by doing a reverse path forwarding check:

net.ipv4.conf.default.rp_filter = 1

The following directive is normally disabled as a security measure to avoid a potential
attack using source routing:

net.ipv4.conf.default.accept_source_route = 0

Also known as the kernel magic sysrq key, developers may change the value of this
directive for development purposes. Generally, you should retain the default setting:

kernel.sysrq = 16

If there’s a crash of the Linux kernel, this option includes the PID number with the kernel
core dump file to help identify the culprit:

kernel.core_uses_pid = 1

Another standard method used by white-hat hackers to overload a system is a flood of SYN
packets. It’s similar to the so-called “ping of death.” The following setting avoids the overload:

net.ipv4.tcp_syncookies = 1

Kernel Run-time Parameters  597

A bridge is an older term for a switch that can forward traffic between different network
segments. The following directives, included in the 00-system.conf file in the /usr/lib/
sysctl.d directory, disable the use of the noted iptables, ip6tables, and arptables filters on
such bridges:

net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0

Such bridges are usually related to virtual networks on a KVM host.

EXERCISE 12-2

Disable Responses to the ping Command
In this exercise, you’ll use kernel parameters to disable responses to the ping command. While
this exercise can be run on any two connected systems, it assumes that you’ll be configuring
the server1.example.com system and testing the result from the tester1.example.com
system.

1.	 On the server1.example.com system, review the current setting related to responses
to ping messages with the following command:

cat /proc/sys/net/ipv4/icmp_echo_ignore_all

2.	 Assuming the output is a 0, try the ping localhost command. What happens? Don’t
forget to press ctrl-c to exit from the output stream. If the output is 1, skip to Step 5.

3.	 Confirm the result from a remote system such as tester1.example.com. In some
situations, you may not have physical access to that system, so connect with the
appropriate ssh command. From the remote system, try the ping server1.example.com
or ping 192.168.122.50 command.

4.	 Return to the server1.example.com system. Change the kernel setting described in
Step 1 with the following command:

echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_all

Confirm by repeating the command from Step 1. Try the ping localhost command
again. What happens?

5.	 Restore the original 0 setting to the icmp_echo_ignore_all option.

598  Chapter 12  RHCE Administrative Tasks

CERTIFICATION OBJECTIVE 12.04

IP Routes
As described in the RHCE objectives, you need to know how to “route IP traffic and create
static routes.” That’s really two tasks. First, it’s a standard part of network configuration to
set up a default route to an outside network. But there’s also the related task, when a system
has two or more network devices, of setting up a static route to a specific network.

Configure a Default Route
The default route is the path taken by a network packet when there aren’t any other more
specific routes for that destination address. When a Dynamic Host Configuration Protocol
(DHCP) server is working and is configured to provide a default gateway with IP addresses,
a default route is assigned with the IP address received by the DHCP server. That’s normally
evident in the output to the ip route command discussed in Chapter 3. One sample of such
output for a system that uses a DHCP server is shown here:

default via 192.168.122.1 dev eth0 proto static metric 1024
192.168.122.0/24 dev eth0 proto kernel scope link src 
192.168.122.50

To review, the default route goes through the gateway address of 192.168.122.1. In a
similar fashion, the default route for a statically configured network system is configured
with the GATEWAY directive in its configuration file. Such configuration files are stored in
the /etc/sysconfig/network-scripts directory, with names such as ifcfg-eth0.

But there are situations, such as a temporary network issue, where the default route is
not given by a DHCP server. Perhaps the DHCP server has to be replaced and you’ll have to
set up static IP address information. In such cases, a default route can be added temporarily
with the ip route command. For example, the following command would restore the default
route shown earlier:

ip route add default via 192.168.122.1 dev eth0

To make sure that default route survives a reboot, you’ll need to ensure either the system
configures that default gateway IP address as part of a static network configuration, or the
DHCP server used for the network can assign that gateway IP address. To review, Figure 12-5
reflects the way the default gateway IPv4 address is configured with the Network Manager
tool. Alternatively, you can make sure the added default route survives a reboot by a direct
change to the ifcfg-ethx configuration file.

Some systems may have multiple network devices. In that case, you may need to
configure a static route.

IP Routes  599

Configure a Static Route
One way to configure a special route is with the Network Manager Connection Editor tool.
As discussed in Chapter 3, you can start it from a GUI console with the nm-connection-
editor command. Select an existing wired or wireless network device and then click Edit.
Under either the IPv4 or IPv6 tab, there’s a Routes button to add static routes. Click it to see
the window shown in Figure 12-6.

When you save the configuration, Network Manager creates a route-eth0 file in the
/etc/sysconfig/network-scripts directory. The following is the complete contents of that file:

ADDRESS0=192.168.0.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.122.1

When the NetworkManager service is restarted, the new route is added to the routing
table. Based on the previously configured routing table, the following is the output of the ip
route command:

default via 192.168.122.1 dev eth0 proto static metric 1024
192.168.0.0/24 via 192.168.122.1 dev eth0 proto static metric 1
192.168.122.0/24 dev eth0 proto kernel scope link src 
192.168.122.50

	 FIGURE 12-5	   A static network configuration with a default gateway

600  Chapter 12  RHCE Administrative Tasks

A dummy interface is a
special type of virtual interface that is not
associated with any network adapters on the
system. You can use a dummy interface to

practice with certain network scenarios
when you don’t have access to a physical
network or your system is offline.

EXERCISE 12-3

Practice with Static Routes
In this exercise, you’ll create a dummy interface to practice the configuration of static
routes. A dummy interface is a virtual interface that is not associated with any adapter
on the host. This exercise assumes you’ll be configuring the dummy interface on

	 FIGURE 12-6	  

A static route for
a specific network
destination

IP Routes  601

the server1.example.com system, while the static route will be added to the physical
host system.

1.	 On server1.example.com, run the following commands to add a dummy interface.
Check that the IP range 192.168.123.0/24 is not already in use in your network. If so,
choose a different network range:

modprobe dummy
ip link set name eth2 dev dummy0
ip address add 192.168.123.123/24 dev eth2
ip link set eth2 up

2.	 Run the ping 192.168.123.123 command on server1.example.com. If you have
correctly set up the dummy interface, you should get a reply to your ping requests.
Don’t forget to press ctrl-c to exit from the output stream.

3.	 Run the ip route command on server1.example.com. You will see a valid route to
192.168.123.0/24 because this network segment is directly connected to the dummy
interface eth2:

192.168.123.0/24 dev eth2 proto kernel scope link src 
192.168.123.123

4.	 Rerun the ping 192.168.123.123 command from the physical host. As your physical
host probably doesn’t have a route to 192.168.123.0/24 via server1, your ping command
won’t receive a response.

5.	 Add a static route to 192.168.123.0/24 on your physical host. To do so, open the
Network Manager Connection Editor tool. Select the virbr0 bridge device and then
click Edit. Under the IPv4 Settings tab, click the Routes button to add a static route.
Set 192.168.123.0 as the network address, 24 as the netmask, and 192.168.122.50 (the
IP address of server1) as the gateway.

6.	 Restart Network Manager, like so:

systemctl restart NetworkManager

7.	 Confirm that the route to 192.168.123.0/24 is installed in the routing table by
running the ip route command.

8.	 Try the ping 192.168.123.123 command again from your physical host. What happens?
9.	 Remove the static route on the physical host.

10.	 Delete the dummy interface on server1:

ip link delete eth2

602  Chapter 12  RHCE Administrative Tasks

CERTIFICATION OBJECTIVE 12.05

An Introduction to IPv6
One of the special challenges of the RHCE exam is IPv6 networking. While most current
networks are configured with IPv4 addresses, several regions have run out of public IPv4
addresses.

Internet Protocol Version 6 (IPv6) was introduced in the late 1990s as a replacement for
IPv4. It turns out that the 4 billion (232) IPv4 addresses are not enough. IPv6 supports many
more addresses, potentially up to 2128, or 3.4×1038 (340 undecillion) addresses.

Basic IPv6 Addressing
In Chapter 3, we introduced the “dot-decimal” notation for IPv4 addresses, where each
decimal octet represents 8 bits of the 32-bit address (for example, 192.168.122.50). IPv6
addresses are made of 128 bits and are set up in hexadecimal notation, also known as base
16. In other words, an IPv6 address may include the following “digits”:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

An IPv6 address is normally organized in eight groups of four hexadecimal numbers
each, called “nibbles,” in the following format:

2001:0db8:3dab:0001:0000:0000:0000:0072

You can simplify IPv6 addressing further:

■■ Remove any leading zeros in a nibble. For example, you can write 0db8 as db8, 0072
as 72, 0000 as 0, and so on.

■■ Replace any sequence of 0000 nibbles with a pair of colons (::). As an example, you
can abbreviate 0000:0000:0000 with a pair of colons. However, to avoid ambiguity,
you can apply this rule only once in an IPv6 address.

Hence, we can rewrite the previous address in a much more compact form:

2001:db8:3dab:1::72

Similarly to IPv4, IPv6 addresses are made of two parts: a host and a network address.
The host portion of an IPv6 address is known as the “interface identifier.” In IPv6, subnet
masks are typically specified in prefix notation (such as /48).

As an example, assume that the IPv6 address 2001:db8:3dab:1::72 has a network prefix
of /64. In other words, the network part of that IPv6 address includes the first 64 bits of

An Introduction to IPv6  603

that address. In this case, that network prefix is 2001:db8:3dab:1. The interface identifier
includes the last 64 bits, shown as the hexadecimal number 72.

IPv6 addresses are classified in several categories. First, there are three address formats:

■■ Unicast  A unicast address is associated with a single network adapter.
■■ Anycast  An anycast address can be assigned to multiple hosts simultaneously. It

can be used for load balancing and redundancy. Anycast addresses are organized in
the same way as unicast addresses.

■■ Multicast  A multicast address is used to send a message to multiple destinations
simultaneously.

With that diversity of address formats, IPv4-style broadcast addresses aren’t needed. If
you want to send a message to multiple systems, use IPv6 multicast addresses.

IPv6 addresses are also organized in several different ranges, as described in Table 12-4.
The default route in IPv4 (0.0.0.0/0) is shown as ::/0 in IPv6.

The link-local address range requires explanation. Every interface in an IPv6 network is
automatically configured with a link-local address. These addresses are not routable; as such
communication is limited to the local network segment. Link-local addresses are needed for
various IPv6 operations.

Even if you haven’t configured IPv6 in your RHEL 7 servers, each network interface is
automatically assigned a link-local address, as shown in the following output:

ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UP qlen 1000
 link/ether 52:54:00:85:61:c0 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.50/24 brd 192.168.122.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fe85:61c0/64 scope link
 valid_lft forever preferred_lft forever

IPv6 Address Type Address Range Description

Global unicast 2000::/3 Used for host-to-host communications.
Anycast Same as unicast Assigned to any number of hosts.
Multicast ff00::/8 Used for one-to-many and many-to-many communications.
Link-local fe80::/10 Reserved for link-local communications.
Unique local fc00::/7 It is the equivalent of RFC 1918 private addresses in IPv4.

	 TABLE 12-4	   IPv6 Address Types

604  Chapter 12  RHCE Administrative Tasks

To identify a link-local address, look for an address that starts with fe80. Note the
“scope link” entry. As you can see, interface eth0 has the following IPv6 link-local address:
fe80::5054:ff:fe85:61c0/64.

Troubleshooting Tools
Most of the network tools that we introduced in Chapter 3 work seamlessly with both IPv4
and IPv6 addresses. There are two notable exceptions: the ping and traceroute commands.
For IPv6 networking, you would use the ping6 and traceroute6 commands.

The ping6 command works in a similar way to ping. Even before you configure an IPv6
address, you can run the ping6 command on the link-local address of the server1.example.com
system:

ping6 -I virbr0 fe80::5054:ff:fe85:61c0

Since link-local addresses are not routable, you must specify the outbound interface (-I)
in the ping6 command when you ping a remote link-local address.

Configure IPv6 Addresses
As with IPv4 networking, you can configure an IPv6 address with the Network Manager
command-line tool nmcli, the text-based graphical tool nmtui, or the Network Manager
Connections Editor.

Start the Network Manager Connections Editor from the GUI with the
nm-connection-editor command.

Highlight the connection profile of the first Ethernet device (eth0 in our system) and click
Edit; then click the IPv6 Settings tab. It’ll open the window shown in Figure 12-7.

Click the Method drop-down text box and select Manual. You can now add IP address
information for the system. For example, on server1.example.com we added the following
settings:

■■ IP Address  2001:db8:3dab:2
■■ Prefix  64
■■ Gateway Address  2001:db8:3dab:1

Similarly, we have associated the IPv6 address 2001:db8:3dab:1 with the virbr0 interface
on our physical system. You can verify the configuration with the following command:

ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UP qlen 1000
 link/ether 52:54:00:85:61:c0 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.50/24 brd 192.168.122.255 scope global eth0
 valid_lft forever preferred_lft forever

An Introduction to IPv6  605

 inet6 2001:db8:3dab::2/64 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::5054:ff:fe85:61c0/64 scope link
 valid_lft forever preferred_lft forever

The configuration is saved in the ifcfg-eth0 file in the /etc/sysconfig/network-scripts
directory. Open that file. You will notice that the Network Manager Connections Editor
added the following configuration lines:

IPV6_AUTOCONF=no
IPV6ADDR=2001:db8:3dab::2/64
IPV6_DEFAULTGW=2001:db8:3dab::1
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no

The IPV6_AUTOCONF directive disables auto-configured IPv6 addresses. The next
variables, IPV6ADDR and IPV6_DEFAULTGW, set the IP addresses of the interface and
the default gateway, respectively, whereas IPV6_DEFROUTE installs a default route in
the routing table. Finally, if the IPV6_FAILURE_FATAL directive is enabled, then a failure
with the IPv6 configuration would result in the interface being down, even if the IPv4
configuration succeeded.

	 FIGURE 12-7	  

Editing an IPv6
address in the
Network Manager
Connections
Editor

606  Chapter 12  RHCE Administrative Tasks

CERTIFICATION OBJECTIVE 12.06

Network Interface Bonding and Teaming
In mission-critical data centers, you would typically connect a Linux server to the network
by patching two of its Ethernet interfaces into different access switches. You would also
normally aggregate the two physical ports into a “logical” network interface (the “bond” or
“team” interface). This configuration provides full redundancy because a single failure won’t
affect the ability of the server to communicate with the rest of the network. In addition, in
some configurations the server can actively send and receive packets through both network
interfaces, doubling the network bandwidth available.

RHEL 7 offers two ways to set up such configurations:

■■ Interface bonding  The standard teaming method in RHEL 6 and still available on
RHEL 7

■■ Network teaming  Introduced in RHEL 7

At the time of writing, the two methods offer similar features, but network teaming
implements a more modular and extensible design than the traditional bond driver. For
the RHCE exam (and for your day-to-day job duties), you should be familiar with both
configuration methods.

To practice with interface bonding and teaming, start with two Ethernet interfaces. For
this purpose, power off the server1.example.com virtual machine and add a second Ethernet
adapter. To do so, start the Virtual Machine Manager, open the virtual machine console
and details window, and click the virtual hardware details button. Click Add Hardware and
select a network device, as shown in Figure 12-8. Set “virtio” as the device model and then
click Finish. Power on the virtual machine and run the ip link show command to confirm
that the new virtual adapter is recognized by the system. You should see one loopback and
two Ethernet adapters installed on your system, as shown in the next output:

ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
mode DEFAULT
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:b6:0d:ce brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast 
state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:a1:48:6c brd ff:ff:ff:ff:ff:ff

Network Interface Bonding and Teaming  607

As noted in Chapter 3, RHEL 7 tries to name network interfaces based on
their physical location (for example, “enoX” or “emX” for the onboard network
interfaces). If you have configured the virtual adapters on a systems using
the “virtio” type, as discussed in this chapter, RHEL 7 should fail back to the
traditional interface enumeration method of eth0, eth1.... If you want to
force your system to use the traditional ethX naming style, you can apply
the procedure described in KB article 283233 at https://access.redhat.com/
solutions/283233.

	 FIGURE 12-8	   Add a new network device to a virtual machine.

608  Chapter 12  RHCE Administrative Tasks

Configure Interface Bonding
You have several methods to configure interface bonding: the command-line nmcli program,
the text-based nmtui tool, and the graphical Network Manager Connections editor. In
addition, if you know the syntax of the network configuration files in /etc/sysconfig/network-
scripts/, you can also create a new configuration by directly editing a few files.

In this section, we show how to configure a bond interface on server1.example.com using
the Network Manager Connections Editor. The objective is to aggregate the two eth0 and
eth1 interfaces (the “slave” interfaces) into a single, logical interface named “bond0” (the
“master” interface).

1.	 Start the application Network Manager Connection Editor from the GUI with the
nm-connection-editor command.

2.	 Delete any existing configuration from the eth0 interface. Select the interface in the
Network Manager Connection Editor and then click Delete.

3.	 Click the Add button, select Bond as a connection type, and confirm by clicking the
Create button. This opens a new window, as shown here:

Network Interface Bonding and Teaming  609

4.	 This next step consists of adding the “slave” interface eth0 to the bond configuration.
Click the Add button, select Ethernet as a connection type, and click Create.

5.	 The Editing bond0 slave 1 window will appear. Set the Connection name to eth0 and
set the Device MAC address to the address of the eth0 interface from the drop-down
menu, as shown here. Click Save.

6.	 Move to the General tab and select the option “Automatically connect to this
network when it is available.” Click Save. This will ensure that the device is
activated at boot.

7.	 Repeat Steps 4, 5, and 6 for the other slave interface eth1.
8.	 Back to the main window in the first illustration, select Active-backup as the failover

mode. The available modes for the bonding driver are discussed in Table 12-5.
9.	 Optionally, you can set the name of the primary interface in the Primary field.

10.	 Leave the other settings in this window at their default value.
11.	 Move to the IPv4 Settings tab. Configure the IP address, netmask, and gateway for

the system with the settings from Table 1-2 in Chapter 1.
12.	 Click Save.

610  Chapter 12  RHCE Administrative Tasks

When configuration is complete, you should have a bond0 interface configured in active-
backup mode, with two slave interfaces: eth0 and eth1. The following command confirms
the current IP configuration settings:

ip addr show bond0
4: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue 
 state UNKNOWN
 link/ether 52:54:00:b6:0d:ce brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.50/24 brd 192.168.122.255 scope global dynamic bond0
 valid_lft 3367sec preferred_lft 3367sec
 inet6 fe80::5054:ff:feb6:dce/64 scope link
 valid_lft forever preferred_lft forever

To show the status of the bond0 interface and its slaves from the link-layer perspective,
run the cat /proc/net/bonding/bond0 command. The output is shown in Figure 12-9 and
indicates that both slave interfaces are up, with the eth0 interface being the active slave.

Bonding Mode Description

Round-robin Packets are transmitted in a round-robin fashion across the slave
interfaces. Provides load balancing and fault tolerance. Requires support
on the network switches (for example, the configuration of a “port
channel” on Cisco devices).

Active-backup Only one slave interface is active. If this active interface fails, a different
slave becomes active. Provides fault tolerance and does not require any
special switch support.

XOR Packets are transmitted across slave interfaces using a XOR hash policy.
Provides per-flow load balancing and fault tolerance.

Broadcast Packets are transmitted on all slave interfaces. Rarely used.
802.3ad Uses IEEE 802.3ad link aggregation, which must be supported on the

network switches. Provides load balancing and fault tolerance.
Adaptive transmit load
balancing

Packets are transmitted across interfaces based on their current load.
Provides load balancing and fault tolerance.

Adaptive load balancing Similar to adaptive transmit load balancing, but also provides inbound
load balancing via ARP negotiation.

	 TABLE 12-5	   Bonding Modes

Network Interface Bonding and Teaming  611

EXERCISE 12-4

Test Bonding Failover
In this exercise, you will test bonding failover. We assume that you have configured an
active-backup bonding interface with two slaves, as explained in the previous section.

1.	 Run a continuous ping command from your physical host to server1.example.com
to confirm that IP connectivity is operational:

ping 192.168.122.50

2.	 Shut down the active interface on server1 with the ifdown eth0 command. Is server1
still replying to ping requests?

3.	 Confirm the status of the active slave interface with the following command:

cat /proc/net/bonding/bond0

4.	 Bring back the eth0 interface with the ifup eth0 command. Is server1 still replying to
ping requests? Which is the active interface of the bond master interface?

5.	 Repeat Steps 2–4 for the eth1 interface. As long as you have one slave interface
active, IP connectivity should always be operational.

6.	 Bring down both eth0 and eth1 interfaces. What happens?

	 FIGURE 12-9	  

Showing the
status of the
bond0 interface

612  Chapter 12  RHCE Administrative Tasks

Configure Interface Teaming
Network teaming is a new method of link aggregation available in RHEL 7. Functionally, it is
similar to interface bonding. However, its architecture differs significantly. Whereas bonding
is implemented in the Linux kernel, interface teaming relies on a very small kernel driver. All
the rest of the code runs in user space as part of a user service daemon (teamd). This approach
guarantees a more modular and extensible design that facilitates the introduction of new
features.

To create a new team interface, start the Network Manager Connection Editor, click
the Add button, and select Team as a connection type. Once you click the Create button, a
window similar to the one shown next will be displayed.

From this point, the configuration for the basic aspects is similar to that of a bonding
interface. As such, you can refer to the previous section for details.

Once a new team interface is set up, you can confirm its status with the following command:

teamdctl team0 state
setup:
 runner: roundrobin
ports:
 eth0
 link watches:

Authentication with Kerberos  613

 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
 eth1
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up

CERTIFICATION OBJECTIVE 12.07

Authentication with Kerberos
Two systems configured with and authenticated by Kerberos can communicate in encrypted
format with a symmetric key. That key is granted by a Key Distribution Center (KDC).
Although there is no RHCE objective related to the configuration of a Kerberos KDC,
you need a KDC to practice with the configurations covered in this section and in
Chapter 16. In the following sections, we start with the basics of Kerberos and then
practice with the configuration of a KDC and a simple client.

A Kerberos Primer
Kerberos is a network authentication protocol, originally developed at the Massachusetts
Institute of Technology (MIT), that supports secure identification of networked systems.
RHEL 7 includes the Kerberos 5 client and software packages developed by MIT.

Kerberos is not a directory service like LDAP. In other words, for a valid client to
authenticate to a Kerberos server, it’ll also need a connection to a network authentication
database such as LDAP, NIS, or the user database in the /etc/passwd file. Directory
services contain the user and group identifiers, users’ home directories, and default
shell information. Kerberos was not designed to store this information, but to provide
authentication services.

Every participant in a Kerberos network (also known as realm) is identified by a
principal. A principal for a user has the form username/instance@REALM. The instance
part is optional and normally qualifies the type of user. The realm indicates the scope of
the Kerberos domain and is normally indicated by a capitalized version of the DNS domain
name. For example, the Kerberos realm for the DNS domain example.com is normally
EXAMPLE.COM.

614  Chapter 12  RHCE Administrative Tasks

According to these rules, the Kerberos principals for the users mike, alex, and root (with
an admin instance) are as follows:

mike@EXAMPLE.COM
alex@EXAMPLE.COM
root/admin@EXAMPLE.COM

Kerberos principals are not limited to users. You can create principals to identify a
computer host or a service. For example, you can represent a host principal in the following
format: host/hostname@REALM. As an example, the host principal for server1.example.com
would be represented by the following string:

host/server1.example.com@EXAMPLE.COM

In a similar fashion, you can set up a Kerberos service principal in the following format:
service/hostname@REALM. For example, you can set up the following principals for the
NFS and FTP services on the host server1.example.com:

nfs/server1.example.com@EXAMPLE.COM
ftp/server1.example.com@EXAMPLE.COM

In a Kerberos-based network, after a user has typed her username and password, the
login program converts the username into a Kerberos principal and sends this information
to the KDC, which consists of an authentication server (AS) and a ticket-granting server
(TGS). Then, the KDC verifies the user’s access rights and sends back to the client a special
message known as a ticket-granting ticket (TGT), encrypted using the password that belongs
to the user’s principal. If the user has supplied the correct password to the login program,
the client will be able to decrypt the TGT message and authenticate successfully.

When authentication is confirmed, the Kerberos client gets a ticket good for a limited
time, typically 24 hours. Besides the maximum ticket lifetime, a TGT also contains the
principal name, a session key to encrypt communications, and a timestamp.

Once an account has a valid TGT, that account can authenticate to other network
services by providing the same TGT, which takes the place of re-entering authentication
credentials for the life of the TGT. This feature is known as single sign-on (SSO).

Prerequisites for Kerberos Servers and Clients
Kerberos relies on accurate timestamps. If the time on the servers and clients is more than five
minutes apart, this will result in authentication failures. To avoid this problem, in a production
network usually all the hosts keep their time in sync via NTP (Network Time Protocol).

Kerberos also relies on a name resolution service. You can make it work with either a
local DNS server or a complete /etc/hosts file on each host of your network.

For this book, we’ve set up a physical workstation named maui.example.com. This host runs
the virtual machines server1.example.com, tester1.example.com, and outsider1.example.com.
The /etc/hosts file for this lab environment is shown in Figure 12-10.

Authentication with Kerberos  615

EXERCISE 12-5

Install a Kerberos KDC
In this guided exercise, we’ll show how to set up a Key Distribution Center. Although this is
not an RHCE requirement, you need a KDC to practice with Exercise 12-6 and the labs at
the end of the chapter. You can install a KDC either on the workstation that runs the virtual
machines that you deployed in Chapter 1 or on a dedicated virtual machine.

1.	 Install the krb5-server and krb5-workstation RPM packages:

yum install -y krb5-server krb5-workstation

2.	 Edit the /etc/krb5.conf file. Uncomment the default_realm = EXAMPLE.COM line
and the four lines in the [realms] stanza. Replace the kdc and admin_server defaults
with the fully qualified domain name of your server (maui.example.com, in our case).
The result is shown here.

	 FIGURE 12-10	  

The contents of
the file /etc/hosts

616  Chapter 12  RHCE Administrative Tasks

3.	 Review the contents of the file /var/kerberos/krb5kdc/kdc.conf. By default, this file
is configured for the Kerberos realm EXAMPLE.COM, as illustrated next. You don’t
have to modify this file, unless you want to configure a different Kerberos realm
name than the default.

4.	 Create a new Kerberos database by running the following command. You will be
prompted for a master key (password), which the KDC uses to encrypt the database:

kdb5_util create -s
Loading random data
Initializing database '/var/kerberos/krb5kdc/principal' for realm 
 'EXAMPLE.COM',
master key name 'K/M@EXAMPLE.COM'
You will be prompted for the database Master Password.
It is important that you NOT FORGET this password.
Enter KDC database master key:
Re-enter KDC database master key to verify:

The -s option saves the master key in a stash file so that you don’t have to manually
enter the master key every time the Kerberos service is started.

5.	 Start and enable the Kerberos services to start at boot:

systemctl start krb5kdc kadmin
systemctl enable krb5kdc kadmin

6.	 Allow connections to the Kerberos server through the default zone on the firewall:

firewall-cmd --permanent --add-service=kerberos
firewall-cmd --reload

7.	 Run the kadmin.local command to administer the KDC and create, list, or delete
principals, as shown in the following example:

kadmin.local
Authenticating as principal root/admin@EXAMPLE.COM with password

Authentication with Kerberos  617

kadmin.local: listprincs
K/M@EXAMPLE.COM
kadmin/admin@EXAMPLE.COM
kadmin/changepw@EXAMPLE.COM
kadmin/maui.example.com@EXAMPLE.COM
krbtgt/EXAMPLE.COM@EXAMPLE.COM

kadmin.local: addprinc mike
Enter password for principal "mike@EXAMPLE.COM":
Re-enter password for principal "mike@EXAMPLE.COM":
Principal "mike@EXAMPLE.COM" created.

kadmin.local: addprinc alex
Enter password for principal "alex@EXAMPLE.COM":
Re-enter password for principal "alex@EXAMPLE.COM":
Principal "alex@EXAMPLE.COM" created.

kadmin.local: delprinc alex
Are you sure you want to delete the principal "alex@EXAMPLE.COM"? 
 (yes/no): yes
Principal "alex@EXAMPLE.COM" deleted.
Make sure that you have removed this principal from all ACLs before 
 reusing.
kadmin.local

Set Up a Kerberos Client
For the purpose of an exam, as well as on the job, it’s almost always best to keep the
solutions as simple as possible. That’s where the Authentication Configuration tool can help.
To see what this tool does to help configure a Kerberos client, you could back up the files
in the /etc/sssd directory, along with the /etc/nsswitch.conf configuration file. This file is
related to the System Security Services Daemon.

The Graphical Authentication Configuration Tool
One way to open the GUI version of the Authentication Configuration tool is with the
authconfig-gtk command. That should open the Authentication Configuration tool with
the two tabs shown in Figure 12-11. Although other authentication databases are supported,
the focus is on LDAP. The options in the LDAP section of the Identity & Authentication tab
were discussed in Chapter 8.

618  Chapter 12  RHCE Administrative Tasks

The focus of this section is on the second half of the tab. For a Kerberos-based client, you’d
retain Kerberos Password as the Authentication Method setting. Here are the other options:

■■ Realm  By convention, the Kerberos realm is the same as the domain name for the
network, in uppercase letters.

■■ KDCs  The KDC is the Kerberos Key Distribution Center. The entry here should
correspond either to the fully qualified domain name (FQDN) or the IP address of
the actual Kerberos server.

	 FIGURE 12-11	  

Configure a
Kerberos-based
client with
the graphical
Authentication
Configuration tool.

Authentication with Kerberos  619

■■ Admin Servers  The administrative server associated with the KDC is frequently
located on the same system. On the Kerberos administrative server, the kadmind
daemon is running.

■■ Use DNS to Resolve Hosts to Realms  Where a trusted DNS server exists for the
local network, you can allow the local system to use a DNS server to find the realm.
If this option is activated, the Realm text box will be blanked out.

■■ Use DNS to Locate KDCs for Realms  Where a trusted DNS server exists for the
local network, you can allow the local system to use a DNS server to find the KDC
and administrative server. If this option is activated, the KDCs and Admin Servers
text boxes will be blanked out.

For the purpose of this section, accept the default options, as shown in Figure 12-11.
Click Apply. After a few moments, the Authentication Configuration window will close and
changes will be made to the configuration files.

The Console Authentication Configuration Tool
To start the text-mode version of the Authentication Configuration tool, run the authconfig-tui
command. As shown in Figure 12-12, you don’t need to activate LDAP, at least for authentication.

After you select Next, the tool prompts for the Kerberos Settings screen shown in
Figure 12-13. The default options shown here are the same as those shown in the graphical
version of the tool from Figure 12-11.

You may also need to set up changes to configuration files, as described next.

	 FIGURE 12-12	  

Configure a
Kerberos-based
client with
the console
Authentication
Configuration tool.

620  Chapter 12  RHCE Administrative Tasks

EXERCISE 12-6

Configure Kerberos Authentication
In this exercise you will set up a user with an associated Kerberos principal for authentication.
We assume that you have a KDC installed on your physical system listening to the IP address
192.168.122.1, and that you want to set up a user on the virtual machine server1.example.com
to authenticate against the KDC. Follow these steps:

1.	 Install the RPM packages krb5-workstation and pam_krb5 on the Kerberos client
server1.example.com:

yum -y install krb5-workstation pam_krb5

2.	 Add a new user on server1.example.com to test Kerberos authentication. For
example:

useradd mike

3.	 From a GNOME terminal, run the command authconfig-tui and set up server1
.example.com to use Kerberos for authentication, as illustrated previously in Figures
12-11 and 12-12. Alternatively, you could run the following command:

authconfig --update --enablekrb5 --krb5kdc=192.168.122.1 \
> --krb5adminserver=192.168.122.1 --krb5realm=EXAMPLE.COM

4.	 On the KDC, run kadmin.local and add a principal for the user mike:

kadmin.local
Authenticating as principal root/admin@EXAMPLE.COM with password
kadmin.local: addprinc mike
Enter password for principal "mike@EXAMPLE.COM":
Re-enter password for principal "mike@EXAMPLE.COM":
Principal "mike@EXAMPLE.COM" created.

	 FIGURE 12-13	  

Specify Kerberos
client settings.

Authentication with Kerberos  621

5.	 Test authentication by logging into server1 as mike via SSH.
6.	 If successful, the klist command will show the TGT for the user mike:

 [mike@server1 ~]$ klist
Ticket cache: KEYRING:persistent:1001:krb_ccache_0YxfosR
Default principal: mike@EXAMPLE.COM

Valid starting Expires Service principal
12/08/15 17:42:53 13/08/15 17:42:53 krbtgt/EXAMPLE.COM@EXAMPLE.COM

SCENARIO & SOLUTION

You need to set up a system utilization report
for various system resources.

Start with the man page for the sadf command; use
the options associated with the sar command for the
desired resources.

You’ve been told to set up IPv6 forwarding on
a system.

Include the net.ipv6.conf.all.forwarding=1 setting
in /etc/sysctl.conf, and activate it with the sysctl -p
command.

You need to set up a special static route over
device eth1.

Use the Network Connections Editor tool to set up
that special route, given the network address, subnet
mask, and desired gateway IP address.

You need network redundancy on your system. Add a second network interface. Aggregate together
the two interfaces using the bond or team driver.

You need to set up a system as a Kerberos
client.

Use the GUI Authentication Configuration tool; the
realm should be the uppercase listing for the domain.
You’ll also need the FQDN for the KDC and Kerberos
administration servers (which may be the same).

CERTIFICATION SUMMARY
Linux administrators need to configure scripts on a regular basis. Sample scripts are already
available in different /etc/cron.* directories. Normally, bash scripts start with the #!/bin/sh
line, which sets up the interpreter. Administrative scripts can use Linux commands, along
with internal bash commands such as for, if, do, and test.

As an RHCE, you need to be able to monitor the performance of administered systems.
That’s the province of the sysstat service. While commands such as df, top, and dstat can
display CPU, RAM, disk, and network utilization data, actual reports can be prepared with

622  Chapter 12  RHCE Administrative Tasks

the help of the sadf command. An example of how this collects RAM and network data is
available in the sadf man page; you can then add CPU and disk use data from related sar
command switches.

Kernel run-time parameters can be found in the /proc/sys directory, but changes to such
files are temporary. For more permanent changes, you’d set up options in the /etc/sysctl.conf
file. Changes to that file can be implemented with the sysctl -p command. Many standard
kernel options relate to networking.

The RHCE objectives include requirements for several special network configurations.
With the help of the Network Connections Editor tool, static IP routes can be configured
in a file in the /etc/sysconfig/network-scripts directory. Using the same tool, you can also
configure IPv6 addresses, as well as bonding and team interfaces.

Kerberos clients can be configured with the authconfig-gtk command. To practice with
Kerberos, you need to configure a Key Distribution Center (KDC), as explained in this chapter.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 12.

Automate System Maintenance
❑❑ Standard administrative scripts can provide a model for custom scripts to automate

system maintenance tasks.
❑❑ Various commands within scripts include do, for, if, and test.
❑❑ Bash scripts start with the #!/bin/sh or #!/bin/bash shebang line.

Set Up System Utilization Reports
❑❑ Several system utilization commands are available in RHEL 7 with the help of the

sysstat package.
❑❑ The sa1 command regularly collects data in the /var/log/sa directory.
❑❑ System status reports can be created with the sadf command, with an assist from sar

command switches.
❑❑ One example of a system status report command is shown in the sadf man page.

Kernel Run-time Parameters
❑❑ Kernel run-time parameters are located in the /proc/sys directory.
❑❑ Many kernel run-time parameters relate to network options such as IP forwarding

and security.
❑❑ Kernel run-time parameters can be configured on a permanent basis with the help of

the /etc/sysctl.conf file.

Self Test  623

IP Routes
❑❑ The configuration of a default route requires a gateway IP address.
❑❑ Static routes to different networks can be configured with the help of the Network

Connections Editor tool and its text-based counterpart nmtui.

An Introduction to IPv6
❑❑ IPv6 addresses have 128 bits organized in nibbles of 16 bits.
❑❑ The three different types of IPv6 addresses are unicast, anycast, and multicast.
❑❑ IPv6 addresses can be limited to local network segments (link-local) or routable.

Network Interface Bonding and Teaming
❑❑ Network bonding and teaming provide link redundancy and optionally higher

network throughput through various configuration modes, such as round-robin and
active-backup.

Authentication with Kerberos
❑❑ To authenticate with Kerberos, you need a Key Distribution Center (KDC).
❑❑ To configure a Kerberos client, you can use the authconfig-gtk command.

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear in
this book. These questions exclusively test your understanding of the chapter. It is okay if you have another
way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat exams.

Automate System Maintenance

1.	 What exit code is associated with success in a script?
__

624  Chapter 12  RHCE Administrative Tasks

2.	 Write a bash test command to check if a file exists and is executable.
__

3.	 Write a bash for statement to cycle through all the users in a system.
__

Set Up System Utilization Reports

4.	 What directory includes a cron job that logs system activity? Assume the appropriate package
is installed.
__

5.	 On a RHEL 7 system, where can you find a sample command to create a system utilization report?
Where can you find additional switches for that report?
__

Kernel Run-time Parameters

6.	 What’s the full path to the /proc file associated with the net.ipv4.ip_forward parameter?
__

IP Routes

7.	 What are the configuration parameters associated with a static route?
__

An Introduction to IPv6

8.	 What is the shortest representation of the 2001:0db8:00aa:0000:04ba:0000:0000:00cd IPv6 address?
__

9.	 What command can you use to ping an IPv6 address?
__

Network Interface Bonding and Teaming

10.	 What command can you run to check the status of a bond0 interface and of its slave interfaces?
__

Self Test Answers  625

Authentication with Kerberos

11.	 What is the standard Kerberos realm for the server1.example.com system?

12.	 Which command do you run to list the Kerberos tickets for the current user?

LAB QUESTIONS
Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’s assumed that you’re running these exercises on virtual machines such as KVM.

Red Hat presents its exams electronically. For that reason, the labs for this chapter are available from
the media that accompanies the book in the Chapter12/ subdirectory. In case you haven’t yet set up
RHEL 7 on a system, refer to Chapter 1 for installation instructions.

The answers for the labs follow the Self Test answers for the fill-in-the-blank questions.

SELF TEST ANSWERS

Automate System Maintenance

1.	 The exit code associated with success in a script is 0.
2.	 A bash test command to check if a file exists and is executable can be written as follows:

test -x /path/to/file

3.	 A for statement to cycle through all the usernames in a system can be written as follows:

for username in $(getent passwd | cut -f 1 -d ":")

626  Chapter 12  RHCE Administrative Tasks

Set Up System Utilization Reports

4.	 The directory with the standard sysstat job is /etc/cron.d.
5.	 On a RHEL 7 system, one place where you can find a command example of a system utilization

report is the sadf man page. Additional switches can be found in the sar man page.

Kernel Run-time Parameters

6.	 The full path to the file associated with the net.ipv4.ip_forward parameter is
/proc/sys/net/ipv4/ip_forward.

IP Routes

7.	 The configuration parameters associated with a static route are the network address, the subnet
mask, and the gateway address.

An Introduction to IPv6

8.	 The shortest representation of the 2001:0db8:00aa:0000:04ba:0000:0000:00cd IPv6 address is
2001:db8:aa:0:4ba::cd.

9.	 You can use the ping6 command to ping an IPv6 address. If this is a link-local address, you need
to specify the outbound interface with the -I switch.

Network Interface Bonding and Teaming

10.	 To check the status of the bond0 interface and its slave interfaces, run the following command:

cat /proc/net/bonding/bond0

Authentication with Kerberos

11.	 The standard Kerberos realm for the server1.example.com system is EXAMPLE.COM.
12.	 The command that lists the Kerberos tickets for the current user is klist.

LAB ANSWERS

Lab 1
Success in this lab should be straightforward. The simplest way to set up the script is to start with the
fundamental requirements and then add the other functionalities. For example, the following script

Lab Answers  627

saves the current date in MMDDHHSS format in the $TODAY variable. Then, it runs the tar command
to back up the directory passed as the first argument into the backup-MMDDHHSS.tar file within the
directory given as the second argument:

#!/bin/bash
TODAY=$(date +%m%d%H%S)
tar cf "$2/backup-$TODAY.tar" "$1"

The next step is to add the other non-core functionalities. You will need a test to check whether the
number of arguments is not equal to two:

if [$# -ne 2]; then
 echo "Usage: backup.sh <source> <destination>"
 exit 1
fi

You will also need to add another test to confirm that the arguments passed to the script are regular
directories:

if [! -d "$1"]; then
 echo "Error: directory $1 does not exist"
 exit 2
fi

In addition, another test is required to check if the second argument is a directory. If the test fails,
the script must create the directory:

if [! -d "$2"]; then
 mkdir -p "$2"
fi

Note that if the second argument is a file but not a directory, the script will return an error.
However, this is not an error condition that the exercise asks you to take into consideration.

If you put together all the blocks of code, you will have a working script. Test the script with different
arguments to verify that all the exception conditions are recognized and successfully processed.

Lab 2
If you understood the requirements of this lab, the answer should be easy. While there are other
methods, one appropriate command that meets the given requirements is available on the man page for
the sadf command:

sadf -d /var/log/sa/sa21 -- -r -n DEV

Of course, to get that information into the noted file, the output must be redirected:

sadf -d /var/log/sa/sa21 -- -r -n DEV > sysstat_report.txt

628  Chapter 12  RHCE Administrative Tasks

Lab 3
This lab builds upon what you did in Lab 2. If you haven’t memorized the additional command options
that specify information on CPU and disk usage, you can find those options in the man page for the sar
command. As suggested in the man page, the -u switch can be used to report CPU usage, whereas the
-d switch reports activity by block device. It can help users read the output if the -p switch is combined
with -d.

But there’s one more requirement: the -p switch next to the sadf command leads to output in a format
usable by the awk command utility. The following is one method to meet the requirements of the lab:

sadf -p /var/log/sa/sa21 -- -u -r -dp -n DEV > morestat_report.txt

Lab 4
If you’ve successfully completed this lab, the /etc/sysctl.conf file (or a file in the /etc/sysctl.d directory)
should now have the following entry:

net.ipv4.icmp_echo_ignore_all = 1

That just makes sure the new setting survives a reboot. You may have also set the associated file,
/proc/sys/net/ipv4/icmp_echo_ignore_all, to 1, or run the sysctl -p command to implement the change
before the system is rebooted.

Of course, success can be confirmed with a ping command, both from local and remote systems.
If you want to restore the original configuration, return to the server1.example.com system and then
remove the net.ipv4.icmp_echo_ignore_all option from the /etc/sysctl.conf file.

Lab 5
If you used the Network Connections tool to set up a special route, it should set up a new file in the
/etc/sysconfig/network-scripts directory. If the specified network adapter is eth0, that special file
would be route-eth0. Given the parameters used for the outsider1.example.org network, as discussed in
Chapter 1, that file would contain the following three lines:

ADDRESS0=192.168.100.0
NETMASK0=255.255.255.0
GATEWAY0=192.168.122.1

Of course, if the outsider1.example.org system is on a different network, the contents of the route-
eth0 file would change accordingly.

Lab 6
To complete this lab, use the Network Manager Connection Editor and add the IPv6 addresses
indicated to the interfaces. The network prefix is /64. You don’t need to set an IPv6 default gateway
because all the IPv6 addresses indicated are on the same subnet.

Lab Answers  629

Then, test connectivity between the hosts with the ping6 command. For example, run the following
command from server1 and tester1 to ping the physical host:

ping6 2001:db8:7a::1

Lab 7
Start this lab by shutting down tester1. Add a new network adapter using the virtio device model and
then power on the machine. You can confirm that the new adapter is available on the system with the
ip link show command.

Use the Network Manager Connection Editor tool to create the team0 adapter. Before creating the
new interface, ensure that the existing configuration on eth0 is removed.

Success in this lab means the following:

■■ You have full network connectivity, as demonstrated by running the ping command to verify
that other hosts are reachable.

■■ The team0 interface is up and aggregates together eth0 and eth1. You can verify this by running
the teamdctl team0 state command.

■■ If you disable the eth0 or eth1 interface with the ifdown command, the system still has network
connectivity.

