
Chapter 16
NFS Secured with 
Kerberos

16.01	 The Network File System (NFS) Server

16.02	 Test an NFS Client

16.03	 NFS with Kerberos

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

Linux is designed for networking. It allows you to share files in two major ways: Samba, 
covered in Chapter 15, and the Network File System (NFS). RHEL 7 does not include GUI 
tools for NFS, but that is not a problem because NFS configuration files are relatively simple.

This chapter starts with a description of NFS, a powerful and versatile way of sharing 
data between servers and workstations. A default installation of RHEL 7 includes an NFS 
client, which supports connections to NFS servers.



774  Chapter 16  NFS Secured with Kerberos

An NFS server can limit access to clients based on their hostnames or IP addresses. In 
addition, NFS trusts the UIDs sent by clients to verify file permissions. This provides only 
a basic level of security, which may not be adequate for some organizations. But if used in 
conjunction with Kerberos, NFS can authenticate access to network shares and provide data 
encryption. This chapter will explain how to set up such configuration.

Take the time you need to understand the configuration files associated with the NFS 
service and Kerberos, and practice making them work on a Linux computer. In some cases, 
two or three computers (such as the KVM virtual machines discussed in Chapters 1 and 2) 
running Linux can help you practice the lessons of this chapter.

INSIDE THE EXAM

Inside the Exam
As shown here, the RHCE objectives for NFS 
are essentially the same as for Samba. Of course, 
what you do to configure NFS is different.

■■ Provide network shares to specific 
clients

■■ Provide network shares suitable for 
group collaboration

The process for limiting NFS access to spe-
cific clients is straightforward. In addition, the 

way to set up group collaboration for an NFS 
network share is based on techniques that we 
have already discussed in Chapter 8.

The integration between NFS and Kerberos 
is a new requirement for the RHCE exam on 
RHEL 7. The objective is to

■■ Use Kerberos to control access to NFS 
network shares

In addition, you will configure firewalld and 
SELinux to work with NFS.

INSIDE THE EXAM

CERTIFICATION OBJECTIVE 16.01

The Network File System (NFS) Server
NFS is the standard for sharing files with Linux and Unix computers. It was originally 
developed by Sun Microsystems in the mid-1980s. Linux has supported NFS (both as a 
client and a server) for years, and NFS continues to be popular in organizations with Unix- 
or Linux-based networks.



The Network File System (NFS) Server  775

You can create NFS shares by editing the /etc/exports configuration file, or by creating a 
new file in the /etc/exports.d directory. In that way, you can set up NFS for basic operation. 
To set up more advanced configurations, it can be helpful to understand the way NFS works 
and how it communicates over a network.

You can enhance NFS security in a number of ways, including the following:

■■ A properly configured firewall
■■ TCP Wrappers
■■ SELinux
■■ Kerberos authentication and encryption

NFS Options for RHEL 7
While NFS version 4 (NFSv4) is the default, RHEL 7 also supports NFS 3 (NFSv3). The 
differences between NFSv3 and NFSv4 include the way clients and servers communicate, 
the maximum file sizes, and support for Windows-style access control lists (ACLs).

If you use NFSv4, you do not need to set up Remote Procedure Call (RPC) communication 
with the rpcbind package. However, RPC is required for NFSv3.

NFSv3 introduced support for 64-bit file sizes to handle files larger than 2GB. NFSv4 
extends NFSv3 and provides several performance improvements. It also supports better 
security, through integration with Kerberos. Whereas NFSv3 relies on a separate protocol 
for file locking known as “NLM” (the Network Lock Manager), NFSv4 includes file locking 
natively.

NFS version 4.1 supports clustered deployments through the pNFS (parallel NFS) 
extension. pNFS allows NFS to scale by distributing data across multiple servers 
and by retrieving that data in parallel from clients. For more information, see the 
websites http://www.pnfs.org and https://github.com/nfs-ganesha/nfs-ganesha.

Basic NFS Installation
The primary group associated with NFS software is the “File and Storage Server” group. In 
other words, if you run the following command, yum installs the mandatory packages from 
that group:

# yum group install "File and Storage Server"

However, this group also includes packages for Samba, CIFS, and iSCSI target support. 
The only package required to set up an NFS server or client is nfs-utils:

# yum -y install nfs-utils



776  Chapter 16  NFS Secured with Kerberos

You may want to install additional packages, including the following:

■■ nfs4-acl-tools  Provides command-line utilities to retrieve and edit access lists on 
NFS shares.

■■ portreserve  Supports the portreserve service, the successor to portmap for NFS 
communication. Prevents NFS from taking ports needed by other services.

■■ quota  Provides quota support for shared NFS directories.
■■ rpcbind  Includes RPC communication support for different NFS channels.

Basic NFS Server Configuration
NFS servers are relatively easy to configure. All you need to do is export a filesystem and 
then mount that filesystem from a remote client.

Of course, that assumes you have opened up the right ports in the firewall and modified 
appropriate SELinux options. NFS is controlled by a series of systemd service units. It also 
comes with a broad array of control commands.

NFS Services
Once the appropriate packages are installed, they are controlled by several different systemd 
service units:

■■ nfs-server.service  Service unit for the NFS server; refers to /etc/sysconfig/nfs for 
basic configuration.

■■ nfs-secure-server.service  Starts the rpc.svcgssd daemon, which provides 
Kerberos authentication and encryption support for the NFS server.

■■ nfs-secure.service   Starts the rpc.gssd daemon, which negotiates Kerberos 
authentication and encryption between an NFS client and server.

■■ nfs-idmap.service   Runs the rpc.idmapd daemon, which translates user and 
group IDs into names. Automatically started by the nfs-server systemd unit.

■■ nfs-lock.service  Required by NFSv3. Starts the rpc.statd daemon, which provides 
locks and the status for files currently in use.

■■ nfs-mountd.service  Runs the rpc.mountd NFS mount daemon. Required by 
NFSv3.

■■ nfs-rquotad.service  Starts the rpc.rquotad daemon, which provides filesystem 
quota services to NFS shares. Automatically started by the nfs-server systemd unit.

■■ rpcbind.service   Executes the rpcbind daemon, which converts RPC program 
numbers into addresses. Used by NFSv3. Automatically started by the nfs-server 
systemd unit.



The Network File System (NFS) Server  777

To bring up an NFS server, you don’t have to memorize all the service units just listed. 
Given the default dependencies between service units, all you need to do is run the 
following commands on the NFS server machine:

# systemctl start nfs-server 
# systemctl enable nfs-server

To enable Kerberos support for NFS, you also need to activate the nfs-secure-server and 
nfs-secure services on the server and client machines, respectively. This will be covered in 
more detail in the next sections.

NFS Control Commands and Files
NFS includes a wide variety of commands to set up exports, to show what’s available, to see 
what’s mounted, to review statistics, and more. Except for specialized mount commands, 
these commands can be found in the /usr/sbin directory.

The NFS mount commands are mount.nfs and umount.nfs. There are also two symbolic 
links, mount.nfs4 and umount.nfs4. Functionally, they work like regular mount and umount 
commands. As suggested by the extensions, they apply to filesystems shared via NFSv4 
and other NFS versions. Like other mount.* commands, they have functional equivalents. 
For example, the mount.nfs4 command is functionally equivalent to the mount -t nfs4 
command.

If you’re mounting a share via the mount.nfs and mount -t nfs commands, NFS tries to 
mount the share using NFSv4 and fails back to NFSv3 if version 4 is not supported by the 
server.

The packages associated with NFS include a substantial number of commands in the  
/usr/sbin directory. The list of commands shown here are just the ones most commonly 
used to configure and test NFS:

■■ exportfs  The exportfs command can be used to manage directories shared 
through and configured in the /etc/exports file.

■■ nfsiostat  A statistics command for input/output rates based on an existing mount 
point. Uses information from the /proc/self/mountstats file.

■■ nfsstat  A statistics command for client/server activity based on an existing mount 
point. Uses information from the /proc/self/mountstats file.

■■ showmount  The command most closely associated with a display of shared NFS 
directories, locally and remotely.

You can use ACL-related commands from the nfs4-acl-tools RPM. You can run these 
commands against filesystems mounted locally with the acl option, as discussed in Chapter 6. 
The commands themselves are straightforward, as they set (nfs4_setfacl), edit (nfs4_editfacl), 
and list (nfs4_getfacl) the current ACLs of specified files. While these commands go beyond 
the basic operation of NFS, they are briefly discussed here and in Chapter 4.



778  Chapter 16  NFS Secured with Kerberos

Assume you have mounted a /home directory with the acl option. You’ve shared that 
directory via NFS. When you apply the nfs4_getfacl command on a file on that shared 
directory, you may see the following output:

A::OWNER@:rwatTcCy 
A::GROUP@:tcy 
A::EVERYONE@:tcy

The ACLs are set to either Allow (A) or Deny (D) access to the file owner (OWNER, 
GROUP, or EVERYONE). The permissions that follow are finer-grained than regular rwx 
permissions. For example, to represent Linux write permissions, ACLs enable both write (w) 
and append (a) permissions.

Perhaps the simplest way to modify these ACLs is with the nfs4_setfacl -e filename 
command, which allows you to edit current permissions in a text editor. As an example, 
to edit a file ACL on a share mounted via NFSv4 from a remote system, run the following 
command:

$ nfs4_setfacl -e /tmp/michael/filename.txt

This command opens the given NFSv4 ACLs in the default text editor for the user 
(normally vi). When we deleted the append permissions for the owner of the file and then 
saved the changes, this action actually removed both append and write permissions for the 
file. To review the result, run the nfs4_getfacl command again:

D::OWNER@:wa 
A::OWNER@:rtTcCy 
A::GROUP@:rwatcy 
A::EVERYONE@:rtcy

If you try the ls -l command on the same file, you will note that the file owner no longer 
has write permissions.

Configure NFS for Basic Operation
The NFS share configuration file, /etc/exports, is fairly simple. Once it’s configured, you can 
export the directories configured in that file with the exportfs -a command.

Each line in /etc/exports lists the directory to be exported, the hosts to which it will be 
exported, and the options that apply to this export. While you can set multiple conditions, 
you can export a particular directory only once. Take the following examples from an 
/etc/exports file:

/pub    tester1.example.com(rw,sync) *(ro,sync) 
/home   *.example.com(rw,async) 172.16.10.0/24(ro) 
/tftp   nodisk.example.net(rw,no_root_squash,sync)



The Network File System (NFS) Server  779

In this example, the /pub directory is exported to the tester1.example.com client with 
read/write permissions. It is also exported to all other clients with read-only permissions. 
The /home directory is exported with read/write permissions to all clients on the example 
.com network, and read-only to clients on the 172.16.10.0/24 subnet. Finally, the /tftp 
directory is exported with full read/write permissions (even for root users) to the nodisk 
.example.net computer.

While these options are fairly straightforward, the /etc/exports file is somewhat picky. A 
space at the end of a line could lead to a syntax error. A space between a hostname and the 
conditions in parentheses would open access to all hosts.

All of these options include the sync flag. This requires write operations to be committed 
to disk before returning the status to the client. Before NFSv4, many such options included 

the insecure flag, which allows access on ports 
above 1024. More options will be discussed in 
the following sections.

You can also split the NFS configuration in 
multiple files with a .exports extension, within 
the /etc/exports.d directory. For instance, you 
could take the three configuration lines in the 
previous /etc/exports file and move them into 
separate files named pub.exports, home.exports, 
and tftp.exports within the /etc/exports.d 
directory.

Wildcards and Globbing
In Linux network configuration files, you can specify a group of computers with the right 
wildcard, which in Linux is also known as globbing. What can be used as a wildcard depends 
on the configuration file. The NFS /etc/exports file uses “conventional” wildcards: for 
example, *.example.net specifies all computers within the example.net domain. In contrast, 
in the /etc/hosts.deny file, .example.net, with the leading dot, specifies all computers in that 
same domain.

For IPv4 networks, wildcards often specify an implicit subnet mask. For example, 
192.168.0.* is equivalent to 192.168.0.0/255.255.255.0, which specifies the 192.168.0.0 
network of computers with IP addresses that range from 192.168.0.1 to 192.168.0.254. Some 
services, including NFS, support the use of CIDR (Classless Inter-Domain Routing) notation. 
In CIDR, since 255.255.255.0 masks 24 bits, CIDR represents this with the number 24. When 
configuring a network in CIDR notation, you can represent this network as 192.168.0.0/24.

More NFS Server Options
With /etc/exports, it’s possible to use a number of different parameters. The parameters 
described in Tables 16-1 and 16-2 fall into two categories: general and security options.

Be careful with the 
/etc/exports file. For example, an extra 
space after either comma in (ro,no_root_
squash,sync) means that the specified 
directory won’t get exported.



780  Chapter 16  NFS Secured with Kerberos

Other parameters relate to security settings of NFS shared directories. As shown in 
Table 16-2, the options are associated with the root administrative user, anonymous-only 
users, and Kerberos authentication.

Activate the List of Exports
After you configure the /etc/exports file, make those directories available to clients with the 
exportfs -a command. The next time RHEL 7 is booted, if the right services are activated, 
the nfs-server systemd unit runs the exportfs -r command, which re-exports directories 
configured in /etc/exports.

However, if you’re modifying, moving, or deleting NFS shares, you should temporarily 
un-export all directories first with the exportfs -ua command. You can make desired 

Parameter Description

async Write operations are performed asynchronously. Provides better throughput, at the 
risk of losing data if the NFS server crashes.

hide Hides filesystems; if you export a directory and subdirectory such as /mnt and 
/mnt/inst, shares to /mnt/inst must be explicitly mounted.

mp Exports a directory only if it was successfully mounted; requires the export point to 
also be a mount point on the server.

ro Exports a volume read-only.
rw Exports a volume read-write.
sync Commits write operations to disk before replying to the client. Active by default.

	 TABLE 16-1	   NFS /etc/exports General Options

Parameter Description

all_squash Maps all local and remote accounts to the anonymous user.
anongid=groupid Specifies a group ID for the anonymous user account.
anonuid=userid Specifies a user ID for the anonymous user account.
insecure Supports communications above port 1024, primarily for NFS versions 2 and 3.
no_root_squash Treats the remote root user as local root; if this parameter is not set, by default 

the root user will be mapped to the nfsnobody user.
sec=value Specifies a list of colon-separated security options. The default value is sys, 

which instructs the NFS server to rely on UIDs/GIDs for file access. Kerberos-
related values are krb5, krb5i, and krb5p.

	 TABLE 16-2	   NFS /etc/exports Security Options



The Network File System (NFS) Server  781

changes and then export the shares with the exportfs -a or exportfs -r command. The 
difference between -a and -r is subtle but important: whereas -a exports (or un-exports, in 
combination with -u) all directories, -r re-exports all directories by synchronizing the list of 
shares and removing those that have been deleted from the /etc/exports configuration file.

Once exports are active, you can review their status with the showmount -e servername 
command. For example, the showmount -e server1.example.com command looks for the 
list of exported NFS directories from the server1.example.com system. If this command is 
not successful, communication may be blocked by a firewall.

Fixed Ports in /etc/sysconfig/nfs
NFSv4 is easier to configure, especially with respect to firewalls. To enable communication 
with an NFSv4 server, the only port you need to open is TCP port 2049. This port is part of 
the nfs service in firewalld, so you should run the following commands on an NFS server 
to allow inbound connections:

# firewall-cmd --permanent --add-service=nfs 
# firewall-cmd --reload

While NFSv4 is the default, RHEL 7 also supports NFSv3. So given the publicly available 
information on the RHCE exam, you might also need to know how to handle this version 
of NFS. NFSv3 uses dynamic port numbers through the RPC service, which listens on UDP 
port 111, and is associated to the rpc-bind firewalld service. You also need to grant access 
to the mountd service, so in total you need to allow the following services to support NFSv3 
through firewalld:

# firewall-cmd --permanent --add-service=nfs --add-service=rpc-bind \ 
> --add-service=mountd 
# firewall-cmd --reload

Once the NFS service is started with the systemctl start nfs-server command, if 
successful you’ll see the associated ports in the output to the rpcinfo command, which lists 
all communication channels associated with RPC. The following command is more precise 
because it isolates actual port numbers:

# rpcinfo -p

Sample output is shown in Figure 16-1. At first glance, the lines may appear repetitive; 
however, every line has a purpose. Unless another RPC-related service such as the Network 
Information Service (NIS) is running, all of the lines shown here are required for NFS 
communications. Examine the first line shown here:

program vers proto   port  service 
 100000    4   tcp    111  portmapper



782  Chapter 16  NFS Secured with Kerberos

The first line represents the arbitrary RPC program number, the NFS version, and the use 
of TCP as a communications protocol, over port 111, with the portmapper service. Note the 
availability of the portmapper service to NFS versions 2, 3, and 4, communicating over the 
TCP and UDP protocols.

Communication through selected ports should also be allowed through any configured 
firewall. For example, Figure 16-2 shows that the firewalld configuration supports remote 
access to a local NFS server through protocol versions 3 and 4.

You can set up these firewall rules with the graphical firewall-config tool discussed in 
Chapter 4.

Make NFS Work with SELinux
Of course, you need to configure more than a firewall. SELinux is an integral part of the 
security landscape, with respect to both boolean options and files. First, be aware of the 
following NFS SELinux file types:

■■ nfs_t  Associated with NFS shares that are exported read-only or read-write.
■■ public_content_ro_t  Associated with NFS shares that are exported read-only.

	 FIGURE 16-1	    
 
Sample rpcinfo -p 
output with NFS-
related ports



The Network File System (NFS) Server  783

■■ public_content_rw_t  Associated with NFS shares that are exported read-write. 
Requires the nfsd_anon_write boolean to be set.

■■ var_lib_nfs_t  Associated with dynamic files in the /var/lib/nfs directory. Files in 
this directory are updated as shares are exported and mounted by clients.

■■ nfsd_exec_t  Assigned to system executable files such as rpc.mountd and rpc.nfsd 
in the /usr/sbin directory. Closely related are the rpcd_exec_t and gssd_exec_t file 
types for services associated with RPCs and communications with Kerberos servers.

In general, you won’t have to assign a new file type to a shared NFS directory. In fact, 
the SELinux file types that are related to file shares (nfs_t, public_content_ro_t, and 
public_content_rw_t) are effective only when the nfs_exports_all_ro and nfs_exports_all_rw 
booleans are disabled. So for most administrators, these file types are shown for reference.

For SELinux, the boolean directives are most important. The options are shown in 
the Booleans section of the SELinux Administration tool, with the nfs filter, as shown in 
Figure 16-3. The figure reflects the default configuration; as you can see, two of the options 
in the global module are enabled by default.

The following directives are associated with making NFS work with SELinux in targeted 
mode. While most of these options were already listed in Chapter 10, they’re worth 
repeating, if only to help those who fear SELinux. The options are described in the order 
shown in the figure.

■■ httpd_use_nfs  Supports access by the Apache web server to shared NFS shares.
■■ cdrecord_read_content  Enables access to mounted NFS shares by the cdrecord 

command.
■■ cobbler_use_nfs  Allows Cobbler to access NFS filesystems.
■■ ftpd_use_nfs  Allows the use of shared NFS directories by FTP servers.

	 FIGURE 16-2	    
 
Firewall rules  
for NFS



784  Chapter 16  NFS Secured with Kerberos

■■ git_cgi_use_nfs  Supports access to NFS shares by the git revision control system 
service in CGI scripts.

■■ git_system_use_nfs  Supports access to NFS shares by the git revision control 
system service.

■■ use_nfs_home_dirs  Enables the mounting of /home from a remote NFS server.
■■ nfs_export_all_rw  Supports read-write access to shared NFS directories.
■■ nfs_export_all_ro  Supports read-only access to shared NFS directories.
■■ ksmtuned_use_nfs  Allows ksmtuned to access NFS shares.
■■ logrotate_use_nfs  Allows logrotate to access NFS files.
■■ mpd_use_nfs  Allows the Music Player Daemon to access content from NFS shares.
■■ openshift_use_nfs  Allows OpenShift to access NFS filesystems.
■■ polipo_use_nfs  Allows access by the Polipo web proxy to NFS-mounted 

filesystems.
■■ nfsd_anon_write  Allows NFS servers to modify public files. Files must labeled 

with the public_content_rw_t type.
■■ samba_share_nfs  Allows Samba to export NFS-mounted filesystems.
■■ sanlock_use_nfs  Enables the SANlock lock manager daemon to access NFS files.

	 FIGURE 16-3	   NFS-related SELinux boolean options



The Network File System (NFS) Server  785

■■ sge_use_nfs  Allows the Sun Grid Engine to access NFS files.
■■ virt_use_nfs  Enables access by VMs to NFS-mounted filesystems.
■■ virt_sandbox_use_nfs  Allows sandbox containers to access NFS filesystems.
■■ xen_use_nfs  Allows access by the Xen hypervisor to NFS-mounted filesystems.

To set these directives, use the setsebool command. For example, to activate access 
to NFS filesystems by an FTP server, in a way that survives a reboot, run the following 
command:

# setsebool -P ftpd_use_nfs 1

Quirks and Limitations of NFS
NFS does have its limitations. Any administrator who controls shared NFS directories 
would be wise to take note of these limitations.

Statelessness
NFSv3 is a “stateless” protocol. In other words, you don’t need to log in separately to access a 
shared NFS directory. Instead, the NFS client normally contacts rpc.mountd on the server. 
The rpc.mountd daemon handles mount requests. It checks the request against currently 
exported filesystems. If the request is valid, rpc.mountd provides an NFS file handle (a 
“magic cookie”), which is then used for further client/server communication for this share.

The stateless protocol allows the NFS client to wait if the NFS server ever has to be 
rebooted. The software waits, and waits, and waits. This can cause the NFS client to hang. 
The client may even have to reboot or even power-cycle the system.

This can also lead to problems with insecure single-user clients. When a file is opened 
through a share, it may be “locked out” from other users. When an NFS server is rebooted, 
handling the locked file can be difficult.

The changes that led to the development of NFSv4 introduced a stateful protocol to make 
the locking mechanism more robust, and should help address this problem.

Root Squash
By default, NFS is set up to root_squash, which prevents root users on an NFS client from 
gaining root access to a share on an NFS server. Specifically, the root user on a client (with a 
user ID of 0) is mapped to the nfsnobody unprivileged account (if in doubt, check the local  
/etc/passwd file).

This behavior can be disabled via the no_root_squash server export option in /etc/exports. 
For exported directories with the no_root_squash option, remote root users can use their 
root privileges on the shared NFS directory. While it can be useful, it is also a security risk, 



786  Chapter 16  NFS Secured with Kerberos

especially from “black hat” hackers who use their own Linux systems to take advantage of 
those root privileges.

NFS Hangs
Because NFSv3 is stateless, NFS clients may wait up to several minutes for a server. In 
some cases, an NFS client may wait indefinitely if a server goes down. During the wait, 
any process that looks for a file on the mounted NFS share will hang. Once this happens, 
it is generally difficult to unmount the offending filesystems, unless you pass the “lazy” 
option to the umount command (umount -l). This may still leave some processes in an 
uninterruptible sleep state, waiting for I/O. You can do several things to reduce the impact 
of this problem:

■■ Take great care to ensure the reliability of NFS servers and the network.
■■ Mount infrequently used NFS exports only when needed. NFS clients should 

unmount these shares after use.
■■ Don’t use async, and set up NFS shares with the sync option (the default), which 

should at least reduce the incidence of lost data.
■■ Keep NFS-mounted directories out of the search path for users, especially that 

of root.
■■ Keep NFS-mounted directories out of the root (/) directory; instead, segregate them 

to a less frequently used filesystem, if possible, on a separate partition.

Inverse DNS Pointers
An NFS server daemon checks mount requests. First, it looks at the current list of exports, 
based on /etc/exports. Then it looks up the client’s IP address to find its hostname. This 
requires a reverse DNS lookup.

This hostname is then finally checked against the list of exports. If NFS can’t find a 
hostname, rpc.mountd will deny access to that client. For security reasons, it also adds a 
“request from unknown host” entry in /var/log/messages.

File Locking
Multiple NFS clients can be set up to mount the same exported directory from the same 
server. It’s quite possible that people on different computers end up trying to use the same 
shared file. This is addressed by the file-locking daemon service.

While mandatory locks are supported by NFSv4, NFS has historically had serious 
problems with file locks. If you have an application that depends on file locking over NFS, 
test it thoroughly before putting it into production.

In addition, you should never share the same directory with NFS and Samba simultaneously 
because the different locking mechanisms used by these services can cause data corruption.



The Network File System (NFS) Server  787

Performance Tips
You take several steps to keep NFS running in a stable and reliable manner. As you gain 
experience with NFS, you might monitor or even experiment with the following factors:

■■ Eight NFS processes, which is the default, is generally sufficient for good 
performance, even under fairly heavy loads. To increase the capacity of the service, 
you can add more NFS processes through the RPCNFSDCOUNT directive in the 
/etc/sysconfig/nfs configuration file. Just keep in mind that the extra processes 
consume additional system resources.

■■ NFS write performance can be slow. In applications where data loss is not a big 
concern, you may try the async option. This makes NFS faster because the server 
immediately returns the state of a write operation to the client, without waiting for 
the data to be written to disk. However, a loss of power or network connectivity can 
result in a loss of data.

■■ Hostname lookups are performed frequently by the NFS server; you can start the 
Name Switch Cache Daemon (nscd) to speed lookup performance.

NFS Security Directives
NFS includes a number of potential security problems and should never be used in hostile 
environments (such as on a server directly exposed to the Internet), at least not without 
strong precautions.

Shortcomings and Risks
NFS is an easy-to-use yet powerful file-sharing system. However, it is not without its 
limitations. The following are a few security issues to keep in mind:

■■ Authentication  NFS relies on the host to report user and group IDs. However,  
this can be a security risk if root users on other computers access your NFS shares.  
In other words, data that is accessible via NFS to any user can potentially be  
accessed by any other user. This risk is addressed by NFSv4 if Kerberos is used for 
authentication.

■■ Privacy  Before NFSv4, NFS did not support encryption. NFSv4 with the support of 
Kerberos can provide encrypted communications.

■■ rpcbind infrastructure  Both the NFSv3 client and server depend on the RPC 
portmap daemon. The earlier versions of the daemon had historically a number of 
serious security holes. For this reason, RHEL 7 has replaced it with the rpcbind service.



788  Chapter 16  NFS Secured with Kerberos

Security Tips
If NFS must be used in or near a hostile environment, you can reduce the security risks:

■■ Educate yourself in detail about NFS security. If possible, set up encrypted NFSv4 
communications with the help of Kerberos. Otherwise, restrict NFS to friendly, 
internal networks protected with a good firewall.

■■ Export as little data as possible, and export filesystems as read-only if possible.
■■ Unless absolutely necessary, don’t supersede the root_squash option. Otherwise, 

“black hat” hackers on allowed clients may grant root-level access to exported 
filesystems.

■■ Use appropriate firewall settings to deny access to the portmapper and nfsd ports, 
except from explicitly trusted hosts or networks. If you’re using NFSv4, it’s good 
enough to open only the following port via the nfs firewalld service:

2049    TCP          nfsd           (server)

Options for Host-Based Security
To review, host-based security on NFS systems is based primarily on the systems allowed to 
access a share in the /etc/exports file. Of course, host-based security can also include limits 
based on firewall rules.

Options for User-Based Security
As NFS mounts should reflect the security 
associated with a common user database, the 
standard user-based security options should 
apply. That includes the configuration of a 
common group, as discussed in Chapter 8.

EXERCISE 16-1

NFS
This exercise requires two systems: one set up as an NFS server, the other as an NFS client. 
Then, on the NFS server, take the following steps:

1.	 Set up a group named IT for the Information Technology group in /etc/group.
2.	 Create the /MIS directory. Assign ownership to the MIS group with the chgrp command.

As long as there’s a 
common user database, such as LDAP, the 
permissions associated with a common 
group directory carry over to a mount 
shared via NFS.



The Network File System (NFS) Server  789

3.	 Set the SGID bit on this directory to enforce group ownership.
4.	 Ensure that the nfs-utils RPM package is installed.
5.	 On the server, start and enable the NFS service to run at boot:

# systemctl start nfs-server 
# systemctl enable nfs-server

6.	 Update the /etc/exports file to allow read and write permissions to the share for the 
local network. Run the following command to apply the change:

# exportfs -a

7.	 Make sure the SELinux booleans are set appropriately; specifically, make sure the 
nfs_export_all_ro and nfs_export_all_rw booleans are both enabled. This is the 
default setting. You can do so either with the getsebool command or the SELinux 
Management tool.

8.	 Open the required ports on the firewall. For NFSv4, the following commands are 
required:

# firewall-cmd --permanent --add-service=nfs 
# firewall-cmd --reload

Then, on an NFS client, take the following steps:
9.	 Ensure that the nfs-utils RPM package is installed.

10.	 Create a directory for the server share called /mnt/MIS.
11.	 Mount the shared NFS directory on /mnt/MIS.
12.	 List all exported shares from the server and save this output in the shares.list file in 

the /mnt/MIS directory.
13.	 Make this a permanent mount in the /etc/fstab file. Assume that the connection 

might be troublesome, and add the appropriate options, such as soft mounting.
14.	 Run the mount -a command to reread /etc/fstab. Check to see if the share is properly 

remounted.
15.	 Test the NFS connection. Stop the NFS service on the server and then try copying a 

file to the /mnt/MIS directory. While the attempt to copy will fail, it should not hang 
the client.

16.	 Restart the NFS service on the server.
17.	 Edit /etc/fstab again. This time, assume that NFS is reliable and remove the special 

options added in Step 13.
18.	 Now shut down the server and test what happens. The mounted NFS directory on 

the client should hang when you try to access the service.
19.	 The client computer may lock. If so, you can boot into the rescue target, as described 

in Chapter 5, to avoid the pain of a reboot. Restore the original configuration.



790  Chapter 16  NFS Secured with Kerberos

CERTIFICATION OBJECTIVE 16.02

Test an NFS Client
Now you can mount a shared NFS directory from a client computer. The commands and 
configuration files are similar to those used for any local filesystem. In the preceding 
section, you configured an NFS server. For now, stay on the NFS server system, as the first 
client test can be run directly from this machine.

NFS Mount Options
Before doing anything elaborate, you should check for the list of shared NFS directories. 
Then you can mount a shared NFS volume from a second Linux system, presumably a 
RHEL 7 system (or equivalent). To that end, the showmount command displays the 
available shared volumes.

Run the showmount command with the -e option; when coupled with the hostname or 
IP address of the NFS server, the command displays the export list, possibly including the 
host limits of the share. For example, given a simple share of the /mnt and /home directories 
on a given NFS server, the showmount -e server1.example.com command provides the 
following result:

Export list for server1.example.com: 
/mnt  192.168.100.0/24 
/home 192.168.122.0/24

If you don’t see a list of shared directories, log in to the NFS server system. Repeat the 
showmount command, substituting localhost or 127.0.0.1 for the hostname or IP address. 
If there’s still no output, review the steps described earlier in this chapter. Make sure the 
/etc/exports file is configured properly. Remember to export the shared directories. Use the 
command

# systemctl status nfs-server

to confirm that the NFS services are running.
Now to mount this directory locally, you’ll need an empty local directory. Create a 

directory such as /remotemnt. You can then mount the shared directory from a system such 
as 192.168.122.50 with the following command:

# mount.nfs 192.168.122.50:/share /remotemnt

This command mounts the NFS /share directory from the computer on the noted IP 
address. If desired, you could substitute the mount -t nfs command for mount.nfs. When 
it works, you’ll be able to access files from the remote /share directory as if it were a local 



Test an NFS Client  791

directory. If the local mount works but the remote mount does not, check the firewall 
settings and ensure that the service is running.

Configure NFS in /etc/fstab
You can also configure an NFS client to mount a remote NFS directory during the boot 
process, as defined in /etc/fstab. For example, the following entry in a client /etc/fstab 
mounts the /homenfs share from the computer named nfsserv on the local /nfs/home 
directory, using the default version 4 of the protocol:

nfsserv:/homenfs   /nfs/home  nfs  soft,timeo=100  0  0

The soft and timeo options are two specialized NFS mount options. Such options, as 
shown here, can also be used to customize how mounts are done during the boot process in 
the /etc/fstab file.

Consider using the soft option when mounting NFS filesystems. When an NFS 
server fails, a soft-mounted NFS filesystem 
will fail rather than hang. However, this can 
cause data corruption in case of a temporary 
network outage. Use this option only when the 
responsiveness of a client is more important than 
data integrity. In addition, you can use the timeo 
option to set a timeout interval, in tenths of a 
second.

For more information on these and related 
options, see the nfs man page, available with the man nfs command.

Alternatively, an automounter can be used to mount NFS filesystems dynamically 
as required by the client computer. The automounter can also unmount these remote 
filesystems after a period of inactivity. For more information on the governing autofs 
service, see Chapter 6.

Diskless Clients
NFS supports diskless clients, which are computers that do not store the operating system 
locally. A diskless client may use a flash memory chip to get started. Then embedded 
commands can mount the appropriate root (/) directory, set up swap space, set the /usr 
directory as read-only, and configure other shared directories such as /home in read/write 
mode. If your computer is set up as a diskless client, you’ll also need access to DHCP and 
TFTP servers to boot the system from a network boot server.

Red Hat Enterprise Linux includes features that support diskless clients. While they are 
not listed as part of the current Red Hat exam requirements or related course outlines, we 
would not be surprised to see such requirements in the future.

NFS-specific options to the 
mount command that can also be used in  
/etc/fstab can be found in the nfs man page.



792  Chapter 16  NFS Secured with Kerberos

Current NFS Status
The current status of NFS services is documented in two directories: /var/lib/nfs and  
/proc/fs/nfsd. If there’s a problem with NFS, look at some of the files in these directories. 
Take these directories one at a time. First, there are two key files in the /var/lib/nfs directory:

■■ etab  Includes a full description of exported directories, including default options
■■ rmtab  Specifies the state of shared directories currently mounted

Take a look at the contents of the /proc/fs/nfsd directory. As this is a virtual directory, 
files in the /proc directory tree have a size of zero. However, as dynamic files, they can 
contain valuable information. Perhaps the key option for basic operation is the file /proc/fs/
nfsd/versions. The content of that file specifies the currently recognized versions of NFS.

The normal content of this file is just a little cryptic, which suggests that the current NFS 
server can communicate using NFSv3, NFSv4, and NFSv4.1, but not with NFSv4.2 and NFSv2:

-2 +3 +4 +4.1 -4.2

If you set the RPCNFSDARGS="-V 4.2" option in the /etc/sysconfig/nfs file and restart 
the NFS service, the contents of the versions file will change to

-2 +3 +4 +4.1 +4.2

The difference is subtle but important. In fact, NFSv4.2 provides an experimental feature 
that allows you to keep the original SELinux context of each file in the shared directory. You 
may want to switch to NFSv4.2 if you need this feature.

CERTIFICATION OBJECTIVE 16.03

NFS with Kerberos
For several years, NFS was considered an insecure protocol. One reason is that NFS, by 
default, trusts the UID and GID sent by a client. A “black hat” hacker that has access to 
an NFS share can easily impersonate the identity of another user and pass her UID/GID 
credentials, because NFS is based on trust.

NFSv4 security issues have been addressed with Kerberos, which can provide strong 
authentication, integrity, and encryption services. If you need security with NFS, protect 
NFS exports with Kerberos.

This section is focused on the configuration of NFS with a Kerberos server. It assumes 
that you have set up a Kerberos KDC and that clients have joined the Kerberos realm, as 
described in Chapter 12.



NFS with Kerberos  793

Kerberos-Enabled NFS Services
To set up a simple NFS service as you did in Exercise 16-1, you need to activate the nfs-server 
systemd unit on the NFS server host. If you want to integrate NFS with Kerberos, you need 
to enable two additional services, nfs-secure-server and nfs-secure, as illustrated in Tables 
16-3 and 16-4.

Therefore, the simplest way to set up all the required services on an NFS server is with 
the following commands:

# systemctl start nfs-server 
# systemctl start nfs-secure-server 
# systemctl enable nfs-server 
# systemctl enable nfs-secure-server

It’s also important to enable the following service unit on all NFS clients:

# systemctl start nfs-secure 
# systemctl enable nfs-secure

As noted in Chapter 11, these commands start the noted service units and make sure the 
services start the next time the system is rebooted.

systemd Service Unit Description

nfs-server The main service unit for the NFS server. It activates other service units, 
such as nfs-idmap, nfs-rquotad, and rpcbind.service. It uses /etc/sysconfig/
nfs for basic configuration. 

nfs-secure-server Provides Kerberos-based authentication and encryption for an NFS server 
through the rpc.svcgssd daemon.

	 TABLE 16-3	   The systemd Service Units on a Kerberos-Enabled NFS Server

systemd Service Unit Description

nfs-secure Provides Kerberos authentication and encryption services to an NFS client 
via the rpc.gssd daemon

	 TABLE 16-4	   The systemd Service Units on a Kerberos-Enabled NFS Client



794  Chapter 16  NFS Secured with Kerberos

Configure NFS Exports with Kerberos
The configuration of a Kerberos-enabled NFS export is straightforward and is based on the 
sec security option of /etc/exports, which we have already encountered in Table 16-2.

The sec option is followed by a colon-separated list of security flavors that an NFS server 
provides to its client. As an example, examine the following line from an /etc/exports file:

/nfs-share *.example.com(rw,sec=sys:krb5:krb5p)

This configuration exports the directory /nfs-share via NFS to clients in the example.com 
domain, with read-write access. Clients can mount the NFS share using one of the following 
security options: sys, krb5, or krb5p.

These options are illustrated in Table 16-5. From the information in the table, the most 
secure export method is krb5p because it provides Kerberos authentication, data integrity, 
and encryption. However, this comes at a cost, as data encryption requires CPU resources 
and may significantly affect performance.

The krb5 and krb5i security options provide authentication and integrity services, and 
are a good compromise between security and throughput. Finally, the sys security method 
corresponds to the UID/GID trust model of NFS, which is always assumed as the default 
security method when the sec security option is not specified in /etc/exports.

If you want to force NFS clients to mount an NFS share using a specific security option, 
include that option as part of the sec parameter. For example, the following line in /etc/exports 
ensures that clients in the example.com domain mount the nfs-share directory with Kerberos 
authentication, integrity, and encryption:

/nfs-share *.example.com(rw,sec=krb5p)

Do remember to run exportfs -r on the NFS server to apply the change and refresh the 
list of exported directories.

Security Option Description

sys Trusts the UID/GID provided by clients to determine file access permission. 
Enabled by default when no sec= option is specified.

krb5 Verifies the UID/GID provided by clients using Kerberos authentication.
krb5i Has the same effect as the krb5 option, but in addition provides strong 

communication integrity.
krb5p Has the same effect as the krb5i option, but in addition provides encryption 

services.

	 TABLE 16-5	   NFS Security Options



NFS with Kerberos  795

Configure NFS Clients with Kerberos
NFS clients can easily mount an NFS share with Kerberos authentication, integrity, and 
encryption services using the sec option with the values listed in Table 16-5. To do so, 
include the sec option either with the mount command or in the /etc/fstab file.

For example, the following command mounts the nfs-share directory from the host 
192.168.122.50 using Kerberos authentication:

mount -t nfs -o sec=krb5 192.168.122.50:/nfs-share /mnt

Similarly, the following line in /etc/fstab instructs the system to mount the nfs-share 
directory during the boot process using Kerberos authentication, encryption, and strong 
integrity:

192.168.122.50:/nfs-share   /mnt  nfs  soft,sec=krb5p 0  0

EXERCISE 16-2

Prepare a System for NFS Secured with Kerberos
To prepare a system to export shared directories via NFS secured with Kerberos, you need to 
complete a few configuration steps. We assume that you have installed a Kerberos KDC and 
configured server1.example.com for Kerberos authentication, as illustrated in Exercise 12-5.

Then on the KDC, take the following steps:

1.	 Create host principals for the NFS server (server1.example.com) and all clients (such 
as tester1.example.com):

# kadmin.local 
Authenticating as principal root/admin@WAMPLE.COM with password 
kadmin.local:  addprinc -randkey host/server1.example.com 
WARNING: no policy specified for host/server1.example.com@EXAMPLE.COM; 
defaulting to no policy 
Principal "host/server1.example.com@EXAMPLE.COM" created. 
kadmin.local: addprinc -randkey host/tester1.example.com 
WARNING: no policy specified for host/tester1.example.com@EXAMPLE.COM; 
defaulting to no policy 
Principal "host/tester1.example.com@EXAMPLE.COM" created. 
kadmin.local:



796  Chapter 16  NFS Secured with Kerberos

2.	 Add NFS service principals for the server and client machines:

kadmin.local:  addprinc -randkey nfs/server1.example.com 
WARNING: no policy specified for nfs/server1.example.com@EXAMPLE.COM; 
defaulting to no policy 
Principal "nfs/server1.example.com@EXAMPLE.COM" created. 
kadmin.local: addprinc -randkey nfs/tester1.example.com 
WARNING: no policy specified for nfs/tester1.example.com@EXAMPLE.COM; 
defaulting to no policy 
Principal "nfs/tester1.example.com@EXAMPLE.COM" created. 
kadmin.local:

3.	 Generate the keytab files for the NFS server and client machines:

# kadmin.local: ktadd -k /tmp/server1.keytab nfs/server1.example.com 
[output truncated] 
# kadmin.local: ktadd -k /tmp/tester1.keytab nfs/server1.example.com 
[output truncated]

4.	 Copy the keytab files to the /etc/krb5.keytab file on the remote systems:

# scp /tmp/server1.keytab server1.example.com:/etc/krb5.keytab 
# scp /tmp/tester1.keytab tester1.example.com:/etc/krb5.keytab

5.	 Copy the /etc/krb5.conf file from the KDC to all NFS servers and clients:

# scp /etc/krb5.conf server1.example.com:/etc/krb5.conf 
# scp /etc/krb5.conf tester1.example.com:/etc/krb5.conf

EXERCISE 16-3

Configure a Kerberos-Enabled NFS Share
In this exercise, you’ll install an NFS server on a RHEL system and export a share with 
Kerberos authentication and encryption. This exercise assumes that you’ve set up a Kerberos 
Key Distribution Center and configured your server1.example.com and tester1.example.com 
virtual machines as described in Exercises 12-5 and 16-2.

1.	 Make sure the NFS server is installed on server1.example.com. The easiest way is 
with the following command:

# rpm -q nfs-utils

2.	 If it isn’t already installed, use the techniques discussed earlier to install the nfs-utils 
RPM package.



NFS with Kerberos  797

3.	 Start the NFS service and its secure component to provide Kerberos authentication 
and encryption services:

# systemctl start nfs-server nfs-secure-server

4.	 Make sure the services are automatically activated the next time the system boots 
with the following command:

# systemctl enable nfs-server nfs-secure-server

5.	 Create a directory named nfs-secure:

# mkdir /nfs-secure

6.	 Configure the share in the /etc/exports file to allow read and write permissions to all 
clients with Kerberos authentication and encryption:

# echo "/nfs-secure *(rw,sec=krb5p)" >> /etc/exports

7.	 Apply the change:

# exportfs -r

8.	 Ensure that the nfs service is enabled on the firewall default zone:

# firewall-cmd --list-all

9.	 If it isn't enabled, add the service to the default zone:

# firewall-cmd --permanent --add-service=nfs 
# firewall-cmd --reload

10.	 On the tester1.example.com client, ensure that the nfs-utils RPM package is 
installed.

11.	 Start the nfs-secure service and activate the service at boot:

# systemctl start nfs-secure 
# systemctl enable nfs-secure

12.	 Create a directory for the server share called /mnt/nfs:

# mkdir /mnt/nfs

13.	 Add the following line to /etc/fstab:

192.168.122.50:/nfs-secure   /mnt/nfs  nfs  sec=krb5p 0  0

14.	 Run the mount -a command to mount the share.



798  Chapter 16  NFS Secured with Kerberos

SCENARIO & SOLUTION
You’re having trouble configuring a firewall for 
NFS.

Enable the nfs service by running firewall-cmd 
--add-service=nfs.

You want to prohibit read/write access to 
shared NFS directories.

Make sure shares are configured with the ro 
parameter in /etc/exports.

You need to set up automatic mounts of a 
shared NFS directory.

Configure the shared directory in /etc/fstab.

You want to export an NFS share with Kerberos 
authentication and encryption.

Export and mount the share with the sec=krb5p 
option. Ensure that your systems are set up for 
Kerberos authentication, as described in Appendix A.

You need to start NFS services to export an 
NFS share with Kerberos authentication.

Enable the services nfs-server and nfs-secure-server 
on the NFS server, and nfs-secure on the clients.

CERTIFICATION SUMMARY
NFS allows you to share filesystems between Linux and Unix computers. It is an efficient 
way to share files between such systems, and it can be secured with Kerberos authentication 
and encryption.

While RHEL 7 supports NFSv4, it also supports access by NFSv3 clients. It’s controlled 
by a group of systemd units. The service unit nfs-server is required to start the NFS 
daemon. Kerberos-based authentication and encryption are controlled by the rpcsvcgssd 
and rpcgssd daemons, which depend, respectively, on the nfs-secure-server service unit 
(on the server) and nfs-secure (on the client). The global options for the NFS service are 
set up primarily in the /etc/sysconfig/nfs file. Related commands include exportfs and 
showmount.

In most cases, you can set up a basic configuration of NFS via a straightforward one-line 
directive in the /etc/exports file. Once the NFS service is running, such exports are activated 
through the exportfs command. Firewalls should be configured by enabling the nfs service 
through the appropriate zone. Active ports and services can be confirmed with the rpcinfo -p 
command.

Generally, the default configuration of SELinux supports basic NFS operation. You can 
configure security for mounted NFS directories as if the mounted filesystems were local. 
You can also automate NFS mounts in /etc/fstab or through the automounter. The current 
status of NFS is documented in various files in the /var/lib/nfs and /proc/fs/nfsd directories.



Two-Minute Drill  799

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 16.

The Network File System (NFS) Server
❑❑ NFS is the standard for sharing files between Linux and Unix computers. RHEL 7 

supports NFS versions 3 and 4; NFSv4 is the default.
❑❑ Key NFS daemons are rpc.mountd for mount requests, rpc.rquotad for quota 

requests, and the nfsd daemon.
❑❑ You can find configuration options for these processes in the /etc/sysconfig/nfs file.
❑❑ NFS shares are configured in /etc/exports and activated with the exportfs -r 

command.
❑❑ Firewalls can be set by enabling the nfs service through the appropriate zone in 

firewalld.
❑❑ In most cases, required booleans for SELinux are already active.
❑❑ To disallow read/write access in SELinux, disable the nfs_export_all_rw boolean.
❑❑ When NFS directories are mounted, they should appear seamless. User permissions 

work in the same way as with a local directory.

Test an NFS Client
❑❑ Clients can mount permanent NFS shares through /etc/fstab.
❑❑ You can review shared directories on a client with the showmount command.
❑❑ The mount command is designed to mount directories shared via NFSv4 and NFSv3.
❑❑ If an NFS server fails, it can “hang” an NFS client. The soft and timeo options to 

the mount command can help prevent such hangs. However, using them would risk 
compromising the integrity of the data if a system crashes.

NFS with Kerberos
❑❑ By default, NFS is insecure because it trusts the UID/GID sent by clients.
❑❑ When integrated with Kerberos, NFS can provide strong authentication (sec=krb5), 

communication integrity (sec=krb5i), and encryption (sec=krb5p).
❑❑ To configure Kerberos-based NFS shares, specify the appropriate security parameter 

via the sec= option on the NFS clients and server.



800  Chapter 16  NFS Secured with Kerberos

❑❑ The nfs-secure-server service must be running on the NFS server to provide 
Kerberos services.

❑❑ The nfs-secure service must be running on the NFS clients to support Kerberos-
authenticated mounts.

❑❑ NFS with Kerberos requires you to set up a KDC, as explained in Chapter 12.

SELF TEST

The following questions will help you measure your understanding of the material presented in this 
chapter. As no multiple choice questions appear on the Red Hat exams, no multiple choice questions 
appear in this book. These questions exclusively test your understanding of the chapter. It is okay if you 
have another way of performing a task. Getting results, not memorizing trivia, is what counts on the 
Red Hat exams. There may be more than one answer to many of these questions.

The Network File System (NFS) Server

1.	 In the /etc/exports file, you want to export the /data directory as read-only to all hosts and grant 
read and write permission to the hostname superv in the example.com domain. What directive 
would you enter in that file?
__________________________________________________________

2.	 Once you’ve configured /etc/exports, what command exports these shares?
__________________________________________________________

3.	 What port number is associated with the portmapper?
_________________________________________________________

4.	 What port number is associated with NFSv4?
_________________________________________________________

5.	 What is the NFS configuration option that supports access by the root administrative user?
_________________________________________________________



Lab Questions  801

Test an NFS Client

6.	 You’re experiencing problems with NFS clients for various reasons, including frequent downtime 
on the NFS server and network disconnections between NFS clients and servers. What type of 
mounting can prevent NFS clients from hanging and retrying NFS requests indefinitely?
_________________________________________________________

7.	 What is the command that can display NFS shared directories from the outsider1.example.org system?
_________________________________________________________

NFS with Kerberos

8.	 Which service should you start on an NFS client to support Kerberos-based authentication via the 
rpcgssd daemon?
_________________________________________________________

9.	 What directive should you include to mount an NFS share with Kerberos authentication and 
encryption?
_________________________________________________________

10.	 What directive should you add to /etc/exports to export an NFS share with standard file access 
permissions and optionally with Kerberos authentication?
_________________________________________________________

LAB QUESTIONS
Several of these labs involve configuration exercises. You should do these exercises on test machines 
only. It’s assumed that you’re running these exercises on virtual machines such as KVM. For this 
chapter, it’s also assumed that you may be changing the configuration of a physical host system for such 
virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this chapter are available in 
the Chapter 16/ subdirectory from the media that accompanies the book. In case you haven’t yet set up 
RHEL 7 on a system, refer to Chapters 1 and 2 for installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.



802  Chapter 16  NFS Secured with Kerberos

SELF TEST ANSWERS

The Network File System (NFS) Server

1.	 The following entry in /etc/exports would export the /data directory as read-only to all hosts and 
grant read and write permission to the host superv in the example.com domain:

/data superv.example.com(rw,sync) (ro,sync)

2.	 Once you’ve revised /etc/exports, the exportfs -a command exports all filesystems. Yes, you can 
also re-export filesystems with the exportfs -r command.

3.	 The port number associated with the portmapper is UDP port 111.
4.	 The port number associated with NFSv4 is TCP port 2049.
5.	 The NFS configuration option that supports access by the root administrative user is no_root_squash.

Test an NFS Client

6.	 Soft mounting and timeouts associated with the soft and timeo options can prevent clients from 
hanging and retrying NFS requests indefinitely.

7.	 The command that can display NFS shared directories from the named remote system is 
showmount -e outsider1.example.org.

NFS with Kerberos

8.	 You should start the nfs-secure server to provide support for Kerberos-based authentication on a 
client via the rpcgssd daemon.

9.	 The directive that you should include to mount an NFS share with Kerberos authentication and 
encryption is sec=krb5p.

10.	 You can export the share with the sec=sys:krb5p security option.



Lab Answers  803

LAB ANSWERS

Lab 1
When this lab is complete, you’ll see the following features on the system with the NFS server:

■■ The nfs-utils RPM in the list of installed packages.
■■ An active NFS service, which can be confirmed in the output to the systemctl status nfs-server 

command.
■■ A zone-based firewall that supports access to the nfs service. It should also be limited by IP 

address network.

In addition, you’ll be able to perform the following tasks from the NFS client:

■■ You can run the showmount -e server1.example.com command, where server1.example.com is 
the name of the NFS server system (substitute if and as needed).

■■ You can mount the shared directory as the root user with the mount -t nfs server1.example 
.com:/shared /testing command.

■■ The first time the share is mounted, you should be able to copy local files as the root user to the  
/testing directory.

■■ The second time the share is mounted, with the no_root_squash directive in effect, such 
copying should not work, at least from the client root user account.

Lab 2
This lab is the first step toward creating a single /home directory for your network. Once you get it 
working on a single client/server combination, you can set it up on all clients and servers. You can 
then use an LDAP server to set up a single Linux/Unix database of usernames and passwords for the 
network. Alternatively, matching usernames (with matching UID and GID numbers) on different local 
systems should also work. On the NFS server, take the following steps:

1.	 Set up a couple of users and identifying files such as user1 and user1.txt on the system being 
used as the NFS server.

2.	 Share the /home directory in /etc/exports on the server1.example.com client. You can do this in 
this file with the following command:

/home *.example.com(rw,sync)

3.	 Export this directory with the following command:

# exportfs -a



804  Chapter 16  NFS Secured with Kerberos

4.	 Make sure that the exported /home directory shows in the export list. On the local server, you 
can do this with the following command:

# showmount -e server1.example.com

5.	 If problems appear during this process, check the /etc/exports file carefully. Make sure there 
aren’t extra spaces in /etc/exports, even at the end of a code line. Make sure the NFS service is 
actually running with the systemctl status nfs-server command.

6.	 You may also want to check your firewall and make sure the appropriate services described in 
this chapter are running with the rpcinfo -p command.

7.	 Remember to make sure that the NFS server starts automatically the next time the system is 
booted. One way to do so is with the following command:

# systemctl enable nfs-server

Now on the NFS client, take the following steps to connect to the shared /home directory:

1.	 Make sure you can see the shared /home directory. You can substitute the IP address of the 
server1.example.com system:

# showmount -e server1.example.com

2.	 Now mount the share that is offered on the local /remote directory:

# mount -t nfs server1.example.com:/home /remote

3.	 Run the mount command. If you see the NFS mount, all is well.
4.	 Examine the mounted /home directory. Look for the *.txt files created earlier in this lab. If you 

find those files, you’ve successfully created and connected to the /home directory share.
5.	 To make the mount permanent, add it to the /etc/fstab file on the client. Once you’ve added a 

line such as the following to that file, the Linux client automatically mounts the shared /home 
directory from the NFS server the next time the client is booted, with the soft option and a 
timeout of 100 seconds, which can help prevent a “hang”:

server1.example.com:/home    /remote nfs soft,timeout=100  0  0

Lab 3
The reference to SELinux is deliberate and should provide an important hint. You may not have enough 
time to modify every directory shared and configured in the /etc/exports file on each NFS server. One 
simple way to prevent writes to shared NFS directories is to deactivate the associated SELinux boolean, 
with the following command:

# setsebool -P nfs_export_all_rw off

You should then be able to test the result with the next mounting of a shared NFS directory.



Lab Answers  805

Lab 4
This lab is an extension of Exercise 16-2 and tries to familiarize you with some of the common  
problems when configuring NFS shares with Kerberos.

Export the share with the sec=sys:krb5:krb5i:krb5p security option to provide optional Kerberos 
authentication, communication integrity, and encryption. See if the tester1.example.com client can 
mount the NFS share using any of the available security methods. Reproduce the troubleshooting sce-
narios described in the lab and take note of the error messages you encounter.


	__DdeLink__635_2009801039



