Chapter 16

NFS Secured with
Kerberos

CERTIFICATION OBJECTIVES

16.01 The Network File System (NFS) Server v Two-Minute Drill
16.02 Test an NFS Client Q&A Self Test
16.03 NFS with Kerberos

inux is designed for networking. It allows you to share files in two major ways: Samba,
covered in Chapter 15, and the Network File System (NFS). RHEL 7 does not include GUI
tools for NFS, but that is not a problem because NFS configuration files are relatively simple.

This chapter starts with a description of NFS, a powerful and versatile way of sharing
data between servers and workstations. A default installation of RHEL 7 includes an NFS
client, which supports connections to NFS servers.

774 Chapter 16 NFS Secured with Kerberos

An NEFS server can limit access to clients based on their hostnames or IP addresses. In
addition, NFS trusts the UIDs sent by clients to verify file permissions. This provides only
a basic level of security, which may not be adequate for some organizations. But if used in
conjunction with Kerberos, NFS can authenticate access to network shares and provide data
encryption. This chapter will explain how to set up such configuration.

Take the time you need to understand the configuration files associated with the NFS
service and Kerberos, and practice making them work on a Linux computer. In some cases,
two or three computers (such as the KVM virtual machines discussed in Chapters 1 and 2)
running Linux can help you practice the lessons of this chapter.

INSIDE THE EXAM

Inside the Exam way to set up group collaboration for an NFS
network share is based on techniques that we
have already discussed in Chapter 8.

The integration between NES and Kerberos
is a new requirement for the RHCE exam on
RHEL 7. The objective is to

As shown here, the RHCE objectives for NFS
are essentially the same as for Samba. Of course,
what you do to configure NFS is different.

B Provide network shares to specific

clients B Use Kerberos to control access to NFS

B Provide network shares suitable for ek chames
group collaboration

In addition, you will configure firewalld and
The process for limiting NES access to spe- SELinux to work with NES.

cific clients is straightforward. In addition, the

CERTIFICATION OBJECTIVE 16.01

The Network File System (NFS) Server

NES is the standard for sharing files with Linux and Unix computers. It was originally
developed by Sun Microsystems in the mid-1980s. Linux has supported NES (both as a
client and a server) for years, and NFS continues to be popular in organizations with Unix-
or Linux-based networks.

The Network File System (NFS) Server 775

You can create NFS shares by editing the /etc/exports configuration file, or by creating a
new file in the /etc/exports.d directory. In that way, you can set up NFS for basic operation.
To set up more advanced configurations, it can be helpful to understand the way NFS works
and how it communicates over a network.

You can enhance NFS security in a number of ways, including the following:

B A properly configured firewall
TCP Wrappers
SELinux

Kerberos authentication and encryption

NFS Options for RHEL 7

on the

While NFS version 4 (NFSv4) is the default, RHEL 7 also supports NFS 3 (NFSv3). The
differences between NFSv3 and NFSv4 include the way clients and servers communicate,
the maximum file sizes, and support for Windows-style access control lists (ACLs).

If you use NFSv4, you do not need to set up Remote Procedure Call (RPC) communication
with the rpcbind package. However, RPC is required for NFSv3.

NEFSv3 introduced support for 64-bit file sizes to handle files larger than 2GB. NFSv4
extends NFSv3 and provides several performance improvements. It also supports better
security, through integration with Kerberos. Whereas NFSv3 relies on a separate protocol
for file locking known as “NLM” (the Network Lock Manager), NFSv4 includes file locking
natively.

NFS version 4.1 supports clustered deployments through the pNFS (parallel NFS)
extension. pNFS allows NFS to scale by distributing data across multiple servers

Qob and by retrieving that data in parallel from clients. For more information, see the

websites http://www.pnfs.org and https://github.com/nfs-ganesha/nfs-ganesha.

Basic NFS Installation

The primary group associated with NFS software is the “File and Storage Server” group. In
other words, if you run the following command, yum installs the mandatory packages from
that group:

yum group install "File and Storage Server"

However, this group also includes packages for Samba, CIFS, and iSCSI target support.
The only package required to set up an NES server or client is nfs-utils:

yum -y install nfs-utils

776 Chapter 16 NFS Secured with Kerberos

You may want to install additional packages, including the following:

nfs4-acl-tools Provides command-line utilities to retrieve and edit access lists on
NFS shares.

portreserve Supports the portreserve service, the successor to portmap for NFS
communication. Prevents NFS from taking ports needed by other services.

quota Provides quota support for shared NFS directories.
rpcbind Includes RPC communication support for different NFS channels.

Basic NFS Server Configuration

NES servers are relatively easy to configure. All you need to do is export a filesystem and
then mount that filesystem from a remote client.

Of course, that assumes you have opened up the right ports in the firewall and modified
appropriate SELinux options. NES is controlled by a series of systemd service units. It also
comes with a broad array of control commands.

NFS Services

Once the appropriate packages are installed, they are controlled by several different systemd
service units:

nfs-server.service Service unit for the NFS server; refers to /etc/sysconfig/nfs for
basic configuration.

nfs-secure-server.service Starts the rpc.svegssd daemon, which provides
Kerberos authentication and encryption support for the NES server.
nfs-secure.service Starts the rpc.gssd daemon, which negotiates Kerberos
authentication and encryption between an NEFS client and server.
nfs-idmap.service Runs the rpc.idmapd daemon, which translates user and
group IDs into names. Automatically started by the nfs-server systemd unit.
nfs-lock.service Required by NFSv3. Starts the rpc.statd daemon, which provides
locks and the status for files currently in use.

nfs-mountd.service Runs the rpc.mountd NFS mount daemon. Required by
NEFSv3.

nfs-rquotad.service Starts the rpc.rquotad daemon, which provides filesystem
quota services to NFS shares. Automatically started by the nfs-server systemd unit.
rpcbind.service Executes the rpcbind daemon, which converts RPC program
numbers into addresses. Used by NFSv3. Automatically started by the nfs-server
systemd unit.

The Network File System (NFS) Server 777

To bring up an NFS server, you don’t have to memorize all the service units just listed.
Given the default dependencies between service units, all you need to do is run the
following commands on the NFS server machine:

systemctl start nfs-server
systemctl enable nfs-server

To enable Kerberos support for NES, you also need to activate the nfs-secure-server and
nfs-secure services on the server and client machines, respectively. This will be covered in
more detail in the next sections.

NFS Control Commands and Files

NES includes a wide variety of commands to set up exports, to show what’s available, to see
what’s mounted, to review statistics, and more. Except for specialized mount commands,
these commands can be found in the /usr/sbin directory.

The NFS mount commands are mount.nfs and umount.nfs. There are also two symbolic
links, mount.nfs4 and umount.nfs4. Functionally, they work like regular mount and umount
commands. As suggested by the extensions, they apply to filesystems shared via NFSv4.
and other NFS versions. Like other mount.* commands, they have functional equivalents.
For example, the mount.nfs4 command is functionally equivalent to the mount -t nfs4
command.

If you're mounting a share via the mount.nfs and mount -t nfs commands, NES tries to
mount the share using NFSv4 and fails back to NFSv3 if version 4 is not supported by the
server.

The packages associated with NFS include a substantial number of commands in the
/usr/sbin directory. The list of commands shown here are just the ones most commonly
used to configure and test NFS:

B exportfs The exportfs command can be used to manage directories shared
through and configured in the /etc/exports file.

B nfsiostat A statistics command for input/output rates based on an existing mount
point. Uses information from the /proc/self/mountstats file.

B nfsstat A statistics command for client/server activity based on an existing mount
point. Uses information from the /proc/self/mountstats file.

B showmount The command most closely associated with a display of shared NFS
directories, locally and remotely.

You can use ACL-related commands from the nfs4-acl-tools RPM. You can run these
commands against filesystems mounted locally with the acl option, as discussed in Chapter 6.
The commands themselves are straightforward, as they set (nfs4_setfacl), edit (nfs4_editfacl),
and list (nfs4_getfacl) the current ACLs of specified files. While these commands go beyond
the basic operation of NFS, they are briefly discussed here and in Chapter 4.

778 Chapter 16 NFS Secured with Kerberos

Assume you have mounted a /home directory with the acl option. You've shared that
directory via NFS. When you apply the nfs4_getfacl command on a file on that shared
directory, you may see the following output:

A: :OWNER@:rwatTcCy
A: :GROUP@: tcy
A::EVERYONE@: tcy

The ACLs are set to either Allow (A) or Deny (D) access to the file owner (OWNER,
GROUP, or EVERYONE). The permissions that follow are finer-grained than regular rwx
permissions. For example, to represent Linux write permissions, ACLs enable both write (w)
and append (a) permissions.

Perhaps the simplest way to modify these ACLs is with the nfs4_setfacl -e filename
command, which allows you to edit current permissions in a text editor. As an example,
to edit a file ACL on a share mounted via NFSv4 from a remote system, run the following
command:

$ nfs4 setfacl -e /tmp/michael/filename.txt

This command opens the given NFSv4 ACLs in the default text editor for the user
(normally vi). When we deleted the append permissions for the owner of the file and then
saved the changes, this action actually removed both append and write permissions for the
file. To review the result, run the nfs4_getfacl command again:

:OWNER@ : wa

:OWNER@: rtTcCy
:GROUP@: rwatcy
:EVERYONE@: rtcy

zry

If you try the Is -1 command on the same file, you will note that the file owner no longer
has write permissions.

Configure NFS for Basic Operation

The NFS share configuration file, /etc/exports, is fairly simple. Once it’s configured, you can
export the directories configured in that file with the exportfs -a command.

Each line in /etc/exports lists the directory to be exported, the hosts to which it will be
exported, and the options that apply to this export. While you can set multiple conditions,
you can export a particular directory only once. Take the following examples from an
/etc/exports file:

/pub testerl.example.com(rw, sync) * (ro,sync)
/home * .example.com(rw,async) 172.16.10.0/24 (ro)
/tftp nodisk.example.net (rw,no_root squash, sync)

The Network File System (NFS) Server 779

In this example, the /pub directory is exported to the testerl.example.com client with
read/write permissions. It is also exported to all other clients with read-only permissions.
The /home directory is exported with read/write permissions to all clients on the example
.com network, and read-only to clients on the 172.16.10.0/24 subnet. Finally, the /tftp
directory is exported with full read/write permissions (even for root users) to the nodisk
.example.net computer.

While these options are fairly straightforward, the /etc/exports file is somewhat picky. A
space at the end of a line could lead to a syntax error. A space between a hostname and the
conditions in parentheses would open access to all hosts.

All of these options include the sync flag. This requires write operations to be committed
to disk before returning the status to the client. Before NFSv4, many such options included

the insecure flag, which allows access on ports
above 1024. More options will be discussed in

Match
W Be careful with the

/etc/exports file. For example, an extra
space after either comma in (ro,no_root_
squash,sync) means that the specified
directory won't get exported.

the following sections.
eYam You can also split the NFS configuration in

multiple files with a .exports extension, within
the /etc/exports.d directory. For instance, you
could take the three configuration lines in the
previous /etc/exports file and move them into
separate files named pub.exports, home.exports,
and tftp.exports within the /etc/exports.d

directory.

Wildcards and Globbing

In Linux network configuration files, you can specify a group of computers with the right
wildcard, which in Linux is also known as globbing. What can be used as a wildcard depends
on the configuration file. The NFS /etc/exports file uses “conventional” wildcards: for
example, *.example.net specifies all computers within the example.net domain. In contrast,
in the /etc/hosts.deny file, .example.net, with the leading dot, specifies all computers in that
same domain.

For IPv4 networks, wildcards often specify an implicit subnet mask. For example,
192.168.0.* is equivalent to 192.168.0.0/255.255.255.0, which specifies the 192.168.0.0
network of computers with IP addresses that range from 192.168.0.1 to 192.168.0.254. Some
services, including NFS, support the use of CIDR (Classless Inter-Domain Routing) notation.
In CIDR, since 255.255.255.0 masks 24 bits, CIDR represents this with the number 24. When
configuring a network in CIDR notation, you can represent this network as 192.168.0.0/24.

More NFS Server Options

With /etc/exports, it’s possible to use a number of different parameters. The parameters
described in Tables 16-1 and 16-2 fall into two categories: general and security options.

780 Chapter 16 NFS Secured with Kerberos

NFS /etc/exports General Options

Parameter Description

async Write operations are performed asynchronously. Provides better throughput, at the
risk of losing data if the NFS server crashes.

hide Hides filesystems; if you export a directory and subdirectory such as /mnt and
/mnt/inst, shares to /mnt/inst must be explicitly mounted.

mp Exports a directory only if it was successfully mounted; requires the export point to
also be a mount point on the server.

ro Exports a volume read-only.

r'w Exports a volume read-write.

sync Commits write operations to disk before replying to the client. Active by default.

Other parameters relate to security settings of NFS shared directories. As shown in
Table 16-2, the options are associated with the root administrative user, anonymous-only
users, and Kerberos authentication.

Activate the List of Exports
After you configure the /etc/exports file, make those directories available to clients with the
exportfs -a command. The next time RHEL 7 is booted, if the right services are activated,
the nfs-server systemd unit runs the exportfs -r command, which re-exports directories
configured in /etc/exports.

However, if you're modifying, moving, or deleting NFS shares, you should temporarily
un-export all directories first with the exportfs -ua command. You can make desired

NFS /etc/exports Security Options

Parameter Description

all_squash Maps all local and remote accounts to the anonymous user.

anongid=groupid Specifies a group ID for the anonymous user account.

anonuid=userid Specifies a user ID for the anonymous user account.

insecure Supports communications above port 1024, primarily for NFS versions 2 and 3.
no_root_squash Treats the remote root user as local root; if this parameter is not set, by default

the root user will be mapped to the nfsnobody user.

sec=value Specifies a list of colon-separated security options. The default value is sys,
which instructs the NFS server to rely on UIDs/GIDs for file access. Kerberos-
related values are krb5, krb5i, and krb5p.

The Network File System (NFS) Server 781

changes and then export the shares with the exportfs -a or exportfs -r command. The
difference between -a and -r is subtle but important: whereas -a exports (or un-exports, in
combination with -u) all directories, -r re-exports all directories by synchronizing the list of
shares and removing those that have been deleted from the /etc/exports configuration file.

Once exports are active, you can review their status with the showmount -e servername
command. For example, the showmount -e serverl.example.com command looks for the
list of exported NFS directories from the serverl.example.com system. If this command is
not successful, communication may be blocked by a firewall.

Fixed Ports in /etc/sysconfig/nfs

NESv4 is easier to configure, especially with respect to firewalls. To enable communication
with an NFSv4 server, the only port you need to open is TCP port 2049. This port is part of
the nfs service in firewalld, so you should run the following commands on an NFS server
to allow inbound connections:

firewall-cmd --permanent --add-service=nfs
firewall-cmd --reload

While NFSv4 is the default, RHEL 7 also supports NFSv3. So given the publicly available
information on the RHCE exam, you might also need to know how to handle this version
of NFS. NFSv3 uses dynamic port numbers through the RPC service, which listens on UDP
port 111, and is associated to the rpc-bind firewalld service. You also need to grant access
to the mountd service, so in total you need to allow the following services to support NFSv3
through firewalld:

firewall-cmd --permanent --add-service=nfs --add-service=rpc-bind \
> --add-service=mountd
firewall-cmd --reload

Once the NFS service is started with the systemctl start nfs-server command, if
successful you'll see the associated ports in the output to the rpcinfo command, which lists
all communication channels associated with RPC. The following command is more precise
because it isolates actual port numbers:

rpcinfo -p

Sample output is shown in Figure 16-1. At first glance, the lines may appear repetitive;
however, every line has a purpose. Unless another RPC-related service such as the Network
Information Service (NIS) is running, all of the lines shown here are required for NFS
communications. Examine the first line shown here:

program vers proto port service
100000 4 tcp 111 portmapper

782 Chapter 16 NFS Secured with Kerberos

m [root@serverl ~]# rpcinfo -p
program wers proto port service

loeeee 4 tcp 111 portmapper
S I info - 1660680 3 tcp 111 portmapper
ample rpcinto -p loeeee 2 tcp 111 portmapper
output with NFS- leeeee 4 udp 111 portmapper
106060 3 udp 111 portmapper
related ports lpo0e0 2 udp 111 portmapper
100024 1 udp 35364 status
loee24 1 tcp 50967 status
1860685 1 udp 20048 mountd
loeees 1 tcp 20048 mountd
1860685 2 udp 20048 mountd
loeees 2 tcp 20048 mountd
1860685 3 udp 20048 mountd
leeees5 3 tcp 20048 mountd
le0083 3 tcp 2049 nfs
lee083 4 tcp 2049 nfs
100227 3 tcp 2049 nfs_acl
lee083 3 udp 2049 nfs
leeee3 4 udp 2049 nfs
100227 3 udp 2049 nfs acl
leeezl 1 udp 41077 nlockmgr
166021 3 udp 41077 nlockmgr
loeezl 4 udp 41077 nlockmgr
1660621 1 tcp 46344 nlockmgr
186021 3 tcp 46344 nlockmgr
lee021 4 tcp 46344 nlockmgr
186011 1 udp 875 rquotad
leeell 2 udp 875 rquotad
186011 1 tcp 875 rquotad

loeell 2 tcp 875 rquotad
[root@serverl ~1# [

The first line represents the arbitrary RPC program number, the NFS version, and the use
of TCP as a communications protocol, over port 111, with the portmapper service. Note the
availability of the portmapper service to NFS versions 2, 3, and 4, communicating over the
TCP and UDP protocols.

Communication through selected ports should also be allowed through any configured
firewall. For example, Figure 16-2 shows that the firewalld configuration supports remote
access to a local NFS server through protocol versions 3 and 4.

You can set up these firewall rules with the graphical firewall-config tool discussed in
Chapter 4.

Make NFS Work with SELinux

Of course, you need to configure more than a firewall. SELinux is an integral part of the
security landscape, with respect to both boolean options and files. First, be aware of the
following NFS SELinux file types:

B nfs_t Associated with NFS shares that are exported read-only or read-write.

B public_content_ro_t Associated with NFS shares that are exported read-only.

The Network File System (NFS) Server 783

m [root@serverl ~]# firewall-cmd --permanent --add-service=nfs \
> --add-service=rpc-bind --add-service=mountd

Firewall rules

for NFS

success
[root@serverl ~]# firewall-cmd --reload
success
[root@serverl ~]# firewall-cmd --list-all
public (default, active)
interfaces: eth@
sources:
services: dhcpv6-client mountd nfs rpc-bind ssh
ports:
masquerade: no
forward-ports:
icmp-blocks:
rich rules:

[root@serverl ~1#]

B public_content_rw_t Associated with NFS shares that are exported read-write.
Requires the nfsd_anon_write boolean to be set.

M var lib_nfs_t Associated with dynamic files in the /var/lib/nfs directory. Files in
this directory are updated as shares are exported and mounted by clients.

B nfsd_exec_t Assigned to system executable files such as rpc.mountd and rpc.nfsd
in the /usr/sbin directory. Closely related are the rpcd_exec_t and gssd_exec_t file
types for services associated with RPCs and communications with Kerberos servers.

In general, you won'’t have to assign a new file type to a shared NES directory. In fact,
the SELinux file types that are related to file shares (nfs_t, public_content_ro_t, and
public_content_rw_t) are effective only when the nfs_exports_all_ro and nfs_exports_all_rw
booleans are disabled. So for most administrators, these file types are shown for reference.

For SELinux, the boolean directives are most important. The options are shown in
the Booleans section of the SELinux Administration tool, with the nfs filter, as shown in
Figure 16-3. The figure reflects the default configuration; as you can see, two of the options
in the global module are enabled by default.

The following directives are associated with making NFS work with SELinux in targeted
mode. While most of these options were already listed in Chapter 10, they’re worth
repeating, if only to help those who fear SELinux. The options are described in the order
shown in the figure.

B httpd_use_nfs Supports access by the Apache web server to shared NFS shares.

B cdrecord_read_content Enables access to mounted NES shares by the cdrecord
command.

B cobbler_use_nfs Allows Cobbler to access NFS filesystems.
B ftpd_use_nfs Allows the use of shared NES directories by FTP servers.

784 Chapter 16 NFS Secured with Kerberos

m NFS-related SELinux boolean options

File Help
Select:
Status

File Labeling

User Mapping
SELinux User
Network Port
Policy Module

Process Domain

SELinux Administration i
& Q
Revert Customized
Filter [nfs\
Active | Module v Description Name
T apache Allow httpd to access nfs file systems httpd_use_nfs
D cdrecord Determine whether cdrecord can read various content. nfs, « cdrecord_read_content
D cobbler Determine whether Cobbler can access nfs file systems. cobbler_use_nfs
D fp Determine whether ftpd can use NFS used for public file tra ftpd_use_nfs
D git Determine whether Git CGI can access nfs file systems. git_cgi_use_nfs
D git Determine whether Git system daemon can access nfs file sy git_system_use_nfs
T global Support NFS home directories use_nfs_home _dirs
@ global Allow any files/directories to be exported read/write via NF! nfs_export_all_rw
global Allow any files/directories to be exported read/only via NFS nfs_export_all_ro
D ksmtuned Allow ksmtuned to use nfs file systems ksmtuned_use_nfs
] logrotate Allow logrotate to manage nfs files logrotate_use_nfs
T mpd Determine whether mpd can use nfs file systems. mpd_use_nfs
T openshift Allow openshift to access nfs file systems without labels openshift_use_nfs
T polipo Determine whether Polipo can access nfs file systems, polipo_use_nfs
al e Allonse nfs carvars to modifi nublic fil m for nublic fila tr ofsd _anon_aerita

git_cgi use_nfs Supports access to NFS shares by the git revision control system
service in CGI scripts.

git_system_use_nfs Supports access to NFS shares by the git revision control
system service.

use_nfs_home_dirs Enables the mounting of /home from a remote NFS server.
nfs_export_all_rw Supports read-write access to shared NFS directories.
nfs_export_all ro Supports read-only access to shared NFS directories.
ksmtuned_use_nfs Allows ksmtuned to access NFS shares.

logrotate_use_nfs Allows logrotate to access NFS files.

mpd_use_nfs Allows the Music Player Daemon to access content from NFS shares.
openshift_use_nfs Allows OpenShift to access NFS filesystems.

polipo_use_nfs Allows access by the Polipo web proxy to NFS-mounted
filesystems.

nfsd_anon_write Allows NFS servers to modify public files. Files must labeled
with the public_content_rw_t type.

samba_share_nfs Allows Samba to export NFS-mounted filesystems.

sanlock_use_nfs Enables the SANlock lock manager daemon to access NFS files.

The Network File System (NFS) Server 785

sge_use_nfs Allows the Sun Grid Engine to access NFS files.
virt_use_nfs Enables access by VMs to NFS-mounted filesystems.

virt_sandbox_use_nfs Allows sandbox containers to access NES filesystems.

xen_use_nfs Allows access by the Xen hypervisor to NFS-mounted filesystems.

To set these directives, use the setsebool command. For example, to activate access
to NFS filesystems by an FTP server, in a way that survives a reboot, run the following
command:

setsebool -P ftpd use nfs 1

Quirks and Limitations of NFS

NES does have its limitations. Any administrator who controls shared NFS directories
would be wise to take note of these limitations.

Statelessness

NEFSv3 is a “stateless” protocol. In other words, you don’t need to log in separately to access a
shared NFS directory. Instead, the NFS client normally contacts rpc.mountd on the server.
The rpc.mountd daemon handles mount requests. It checks the request against currently
exported filesystems. If the request is valid, rpc.mountd provides an NFS file handle (a
“magic cookie”), which is then used for further client/server communication for this share.

The stateless protocol allows the NFS client to wait if the NFS server ever has to be
rebooted. The software waits, and waits, and waits. This can cause the NFS client to hang.
The client may even have to reboot or even power-cycle the system.

This can also lead to problems with insecure single-user clients. When a file is opened
through a share, it may be “locked out” from other users. When an NEFS server is rebooted,
handling the locked file can be difficult.

The changes that led to the development of NFSv4 introduced a stateful protocol to make
the locking mechanism more robust, and should help address this problem.

Root Squash

By default, NFS is set up to root_squash, which prevents root users on an NFS client from
gaining root access to a share on an NFS server. Specifically, the root user on a client (with a
user ID of 0) is mapped to the nfsnobody unprivileged account (if in doubt, check the local
/etc/passwd file).

This behavior can be disabled via the no_root_squash server export option in /etc/exports.
For exported directories with the no_root_squash option, remote root users can use their
root privileges on the shared NFS directory. While it can be useful, it is also a security risk,

786 Chapter 16 NFS Secured with Kerberos

especially from “black hat” hackers who use their own Linux systems to take advantage of
those root privileges.

NFS Hangs

Because NFSv3 is stateless, NFS clients may wait up to several minutes for a server. In
some cases, an NFS client may wait indefinitely if a server goes down. During the wait,
any process that looks for a file on the mounted NFS share will hang. Once this happens,
it is generally difficult to unmount the offending filesystems, unless you pass the “lazy”
option to the umount command (umount -1). This may still leave some processes in an
uninterruptible sleep state, waiting for I/O. You can do several things to reduce the impact
of this problem:

B Take great care to ensure the reliability of NFS servers and the network.

B Mount infrequently used NFS exports only when needed. NFS clients should
unmount these shares after use.

B Don't use async, and set up NFS shares with the sync option (the default), which
should at least reduce the incidence of lost data.

B Keep NFS-mounted directories out of the search path for users, especially that
of root.

B Keep NFS-mounted directories out of the root (/) directory; instead, segregate them
to a less frequently used filesystem, if possible, on a separate partition.

Inverse DNS Pointers

An NFS server daemon checks mount requests. First, it looks at the current list of exports,
based on /etc/exports. Then it looks up the client’s IP address to find its hostname. This
requires a reverse DNS lookup.

This hostname is then finally checked against the list of exports. If NFS can't find a
hostname, rpc.mountd will deny access to that client. For security reasons, it also adds a
“request from unknown host” entry in /var/log/messages.

File Locking

Multiple NFS clients can be set up to mount the same exported directory from the same
server. It’s quite possible that people on different computers end up trying to use the same
shared file. This is addressed by the file-locking daemon service.

While mandatory locks are supported by NFSv4, NES has historically had serious
problems with file locks. If you have an application that depends on file locking over NFS,
test it thoroughly before putting it into production.

In addition, you should never share the same directory with NFS and Samba simultaneously
because the different locking mechanisms used by these services can cause data corruption.

The Network File System (NFS) Server 787

Performance Tips

You take several steps to keep NFS running in a stable and reliable manner. As you gain
experience with NFS, you might monitor or even experiment with the following factors:

B Eight NFS processes, which is the default, is generally sufficient for good
performance, even under fairly heavy loads. To increase the capacity of the service,
you can add more NES processes through the RPCNFSDCOUNT directive in the
/etc/sysconfig/nfs configuration file. Just keep in mind that the extra processes
consume additional system resources.

B NFS write performance can be slow. In applications where data loss is not a big
concern, you may try the async option. This makes NFS faster because the server
immediately returns the state of a write operation to the client, without waiting for
the data to be written to disk. However, a loss of power or network connectivity can
result in a loss of data.

B Hostname lookups are performed frequently by the NES server; you can start the
Name Switch Cache Daemon (nscd) to speed lookup performance.

NFS Security Directives

NES includes a number of potential security problems and should never be used in hostile
environments (such as on a server directly exposed to the Internet), at least not without
strong precautions.

Shortcomings and Risks

NFES is an easy-to-use yet powerful file-sharing system. However, it is not without its
limitations. The following are a few security issues to keep in mind:

B Authentication NFS relies on the host to report user and group IDs. However,
this can be a security risk if root users on other computers access your NFS shares.
In other words, data that is accessible via NFS to any user can potentially be
accessed by any other user. This risk is addressed by NFSv4 if Kerberos is used for
authentication.

B Privacy Before NFSv4, NES did not support encryption. NFSv4 with the support of
Kerberos can provide encrypted communications.
B rpcbind infrastructure Both the NFSv3 client and server depend on the RPC

portmap daemon. The earlier versions of the daemon had historically a number of
serious security holes. For this reason, RHEL 7 has replaced it with the rpcbind service.

788 Chapter 16 NFS Secured with Kerberos

Security Tips

If NES must be used in or near a hostile environment, you can reduce the security risks:

B Educate yourself in detail about NFES security. If possible, set up encrypted NFSv4

communications with the help of Kerberos. Otherwise, restrict NES to friendly,
internal networks protected with a good firewall.

Export as little data as possible, and export filesystems as read-only if possible.
Unless absolutely necessary, don’t supersede the root_squash option. Otherwise,
“black hat” hackers on allowed clients may grant root-level access to exported
filesystems.

Use appropriate firewall settings to deny access to the portmapper and nfsd ports,
except from explicitly trusted hosts or networks. If you're using NFSv4, it’s good
enough to open only the following port via the nfs firewalld service:

2049 TCP nftsd (server)

Options for Host-Based Security

To review, host-based security on NFS systems is based primarily on the systems allowed to
access a share in the /etc/exports file. Of course, host-based security can also include limits
based on firewall rules.

Match

common user database, such as LDAP, the
permissions associated with a common
group directory carry over to a mount
shared via NFS.

.- Options for User-Based Security
e)am As NFS mounts should reflect the security

associated with a common user database, the
standard user-based security options should
apply. That includes the configuration of a
common group, as discussed in Chapter 8.

As long as there’s a

EXERCISE 16-1

NFS

This exercise requires two systems: one set up as an NFS server, the other as an NFS client.
Then, on the NES server, take the following steps:

. Set up a group named IT for the Information Technology group in /etc/group.
2. Create the /MIS directory. Assign ownership to the MIS group with the chgrp command.

13.

14.

15.

16.

17.

18.

19.

The Network File System (NFS) Server 789

Set the SGID bit on this directory to enforce group ownership.

. Ensure that the nfs-utils RPM package is installed.

On the server, start and enable the NFS service to run at boot:

systemctl start nfs-server
systemctl enable nfs-server

Update the /etc/exports file to allow read and write permissions to the share for the
local network. Run the following command to apply the change:

exportfs -a

. Make sure the SELinux booleans are set appropriately; specifically, make sure the

nfs_export_all_ro and nfs_export_all_rw booleans are both enabled. This is the
default setting. You can do so either with the getsebool command or the SELinux
Management tool.

Open the required ports on the firewall. For NFSv4, the following commands are
required:

firewall-cmd --permanent --add-service=nfs
firewall-cmd --reload

Then, on an NFS client, take the following steps:

. Ensure that the nfs-utils RPM package is installed.
10.
11.
12.

Create a directory for the server share called /mnt/MIS.
Mount the shared NFS directory on /mnt/MIS.

List all exported shares from the server and save this output in the shares.list file in
the /mnt/MIS directory.

Make this a permanent mount in the /etc/fstab file. Assume that the connection
might be troublesome, and add the appropriate options, such as soft mounting.

Run the mount -a command to reread /etc/fstab. Check to see if the share is properly
remounted.

Test the NFS connection. Stop the NFS service on the server and then try copying a
file to the /mnt/MIS directory. While the attempt to copy will fail, it should not hang
the client.

Restart the NFS service on the server.

Edit /etc/fstab again. This time, assume that NES is reliable and remove the special
options added in Step 13.

Now shut down the server and test what happens. The mounted NFS directory on
the client should hang when you try to access the service.

The client computer may lock. If so, you can boot into the rescue target, as described
in Chapter 5, to avoid the pain of a reboot. Restore the original configuration.

790 Chapter 16 NFS Secured with Kerberos

CERTIFICATION OBJECTIVE 16.02

Test an NFS Client

Now you can mount a shared NFS directory from a client computer. The commands and
configuration files are similar to those used for any local filesystem. In the preceding
section, you configured an NFS server. For now, stay on the NFS server system, as the first
client test can be run directly from this machine.

NFS Mount Options

Before doing anything elaborate, you should check for the list of shared NES directories.
Then you can mount a shared NFS volume from a second Linux system, presumably a
RHEL 7 system (or equivalent). To that end, the showmount command displays the
available shared volumes.

Run the showmount command with the -e option; when coupled with the hostname or
IP address of the NFS server, the command displays the export list, possibly including the
host limits of the share. For example, given a simple share of the /mnt and /home directories
on a given NFS server, the showmount -e serverl.example.com command provides the
following result:

Export list for serverl.example.com:
/mnt 192.168.100.0/24
/home 192.168.122.0/24

If you don'’t see a list of shared directories, log in to the NES server system. Repeat the
showmount command, substituting localhost or 127.0.0.1 for the hostname or IP address.
If there’s still no output, review the steps described earlier in this chapter. Make sure the
/etc/exports file is configured properly. Remember to export the shared directories. Use the
command

systemctl status nfs-server

to confirm that the NFS services are running.

Now to mount this directory locally, you'll need an empty local directory. Create a
directory such as /remotemnt. You can then mount the shared directory from a system such
as 192.168.122.50 with the following command:

mount.nfs 192.168.122.50:/share /remotemnt

This command mounts the NFS /share directory from the computer on the noted IP
address. If desired, you could substitute the mount -t nfs command for mount.nfs. When
it works, you'll be able to access files from the remote /share directory as if it were a local

Test an NFS Client 791

directory. If the local mount works but the remote mount does not, check the firewall
settings and ensure that the service is running.

Configure NFS in /etc/fstab

You can also configure an NFS client to mount a remote NFS directory during the boot
process, as defined in /etc/fstab. For example, the following entry in a client /etc/fstab
mounts the /homenfs share from the computer named nfsserv on the local /nfs/home
directory, using the default version 4 of the protocol:

nfsserv:/homenfs /nfs/home nfs soft,timeo=100 0 O

The soft and timeo options are two specialized NFS mount options. Such options, as
shown here, can also be used to customize how mounts are done during the boot process in
the /etc/fstab file.

Consider using the soft option when mounting NFS filesystems. When an NFS
server fails, a soft-mounted NFS filesystem
will fail rather than hang. However, this can
cause data corruption in case of a temporary
network outage. Use this option only when the
Datch responsiveness of a client is more important than

LT i el to.the data integrity. In addition, you can use the timeo
mount command that can also be used in
option to set a timeout interval, in tenths of a

/etc/fstab can be found in the nfs man page.
second.

For more information on these and related
options, see the nfs man page, available with the man nfs command.
Alternatively, an automounter can be used to mount NFS filesystems dynamically
as required by the client computer. The automounter can also unmount these remote
filesystems after a period of inactivity. For more information on the governing autofs
service, see Chapter 6.

Diskless Clients

NES supports diskless clients, which are computers that do not store the operating system
locally. A diskless client may use a flash memory chip to get started. Then embedded
commands can mount the appropriate root (/) directory, set up swap space, set the /usr
directory as read-only, and configure other shared directories such as /home in read/write
mode. If your computer is set up as a diskless client, you'll also need access to DHCP and
TETP servers to boot the system from a network boot server.

Red Hat Enterprise Linux includes features that support diskless clients. While they are
not listed as part of the current Red Hat exam requirements or related course outlines, we
would not be surprised to see such requirements in the future.

792 Chapter 16 NFS Secured with Kerberos

Current NFS Status

The current status of NFS services is documented in two directories: /var/lib/nfs and
/proc/fs/nfsd. If there’s a problem with NFS, look at some of the files in these directories.
Take these directories one at a time. First, there are two key files in the /var/lib/nfs directory:

B etab Includes a full description of exported directories, including default options
B rmtab Specifies the state of shared directories currently mounted

Take a look at the contents of the /proc/fs/nfsd directory. As this is a virtual directory,
files in the /proc directory tree have a size of zero. However, as dynamic files, they can
contain valuable information. Perhaps the key option for basic operation is the file /proc/fs/
nfsd/versions. The content of that file specifies the currently recognized versions of NFS.

The normal content of this file is just a little cryptic, which suggests that the current NFS
server can communicate using NFSv3, NFSv4, and NFSv4.1, but not with NFSv4.2 and NFSv2:

-2 +3 +4 +4.1 -4.2

If you set the RPCNFSDARGS="-V 4.2" option in the /etc/sysconfig/nfs file and restart
the NES service, the contents of the versions file will change to

-2 43 +4 +4.1 +4.2

The difference is subtle but important. In fact, NFSv4.2 provides an experimental feature
that allows you to keep the original SELinux context of each file in the shared directory. You
may want to switch to NFSv4.2 if you need this feature.

CERTIFICATION OBJECTIVE 16.03

NFS with Kerberos

For several years, NFS was considered an insecure protocol. One reason is that NES, by
default, trusts the UID and GID sent by a client. A “black hat” hacker that has access to
an NFS share can easily impersonate the identity of another user and pass her UID/GID
credentials, because NFS is based on trust.

NESv4 security issues have been addressed with Kerberos, which can provide strong
authentication, integrity, and encryption services. If you need security with NES, protect
NES exports with Kerberos.

This section is focused on the configuration of NFS with a Kerberos server. It assumes
that you have set up a Kerberos KDC and that clients have joined the Kerberos realm, as
described in Chapter 12.

NFS with Kerberos 793

Kerberos-Enabled NFS Services

To set up a simple NFES service as you did in Exercise 16-1, you need to activate the nfs-server
systemd unit on the NFS server host. If you want to integrate NFS with Kerberos, you need
to enable two additional services, nfs-secure-server and nfs-secure, as illustrated in Tables
16-3 and 16-4.

Therefore, the simplest way to set up all the required services on an NES server is with
the following commands:

systemctl start nfs-server
systemctl start nfs-secure-server
systemctl enable nfs-server
systemctl enable nfs-secure-server

#
#
#
#

It’s also important to enable the following service unit on all NFS clients:

systemctl start nfs-secure
systemctl enable nfs-secure

As noted in Chapter 11, these commands start the noted service units and make sure the
services start the next time the system is rebooted.

The systemd Service Units on a Kerberos-Enabled NFS Server

systemd Service Unit Description

nfs-server The main service unit for the NFS server. It activates other service units,
such as nfs-idmap, nfs-rquotad, and rpcbind.service. It uses /etc/sysconfig/
nfs for basic configuration.

nfs-secure-server Provides Kerberos-based authentication and encryption for an NFS server
through the rpc.svegssd daemon.

TABLE 16-4 The systemd Service Units on a Kerberos-Enabled NFS Client

systemd Service Unit Description

nfs-secure Provides Kerberos authentication and encryption services to an NFS client
via the rpc.gssd daemon

794 Chapter 16 NFS Secured with Kerberos

Configure NFS Exports with Kerberos

The configuration of a Kerberos-enabled NFS export is straightforward and is based on the
sec security option of /etc/exports, which we have already encountered in Table 16-2.

The sec option is followed by a colon-separated list of security flavors that an NFS server
provides to its client. As an example, examine the following line from an /etc/exports file:

/nfs-share *.example.com(rw, sec=sys:krb5:krb5p)

This configuration exports the directory /nfs-share via NFS to clients in the example.com
domain, with read-write access. Clients can mount the NFS share using one of the following
security options: sys, krb5, or krb5p.

These options are illustrated in Table 16-5. From the information in the table, the most
secure export method is krb5p because it provides Kerberos authentication, data integrity,
and encryption. However, this comes at a cost, as data encryption requires CPU resources
and may significantly affect performance.

The krb5 and krb5i security options provide authentication and integrity services, and
are a good compromise between security and throughput. Finally, the sys security method
corresponds to the UID/GID trust model of NFS, which is always assumed as the default
security method when the sec security option is not specified in /etc/exports.

If you want to force NFS clients to mount an NFS share using a specific security option,
include that option as part of the sec parameter. For example, the following line in /etc/exports
ensures that clients in the example.com domain mount the nfs-share directory with Kerberos
authentication, integrity, and encryption:

/nfs-share *.example.com(rw, sec=krb5p)

Do remember to run exportfs -r on the NFS server to apply the change and refresh the
list of exported directories.

NFS Security Options

Security Option Description

sys Trusts the UID/GID provided by clients to determine file access permission.
Enabled by default when no sec= option is specified.

krb5 Verifies the UID/GID provided by clients using Kerberos authentication.

krb5i Has the same effect as the krb5 option, but in addition provides strong
communication integrity.

krb5p Has the same effect as the krb5i option, but in addition provides encryption
services.

NFS with Kerberos 795

Configure NFS Clients with Kerberos

NES clients can easily mount an NFS share with Kerberos authentication, integrity, and
encryption services using the sec option with the values listed in Table 16-5. To do so,
include the sec option either with the mount command or in the /etc/fstab file.

For example, the following command mounts the nfs-share directory from the host
192.168.122.50 using Kerberos authentication:

mount -t nfs -o sec=krb5 192.168.122.50:/nfs-share /mnt

Similarly, the following line in /etc/fstab instructs the system to mount the nfs-share
directory during the boot process using Kerberos authentication, encryption, and strong
integrity:

192.168.122.50:/nfs-share /mnt nfs soft,sec=krb5p 0 0

EXERCISE 16-2

Prepare a System for NFS Secured with Kerberos

To prepare a system to export shared directories via NFS secured with Kerberos, you need to

complete a few configuration steps. We assume that you have installed a Kerberos KDC and

configured serverl.example.com for Kerberos authentication, as illustrated in Exercise 12-5.
Then on the KDC, take the following steps:

1.

Create host principals for the NFS server (serverl.example.com) and all clients (such
as testerl.example.com):

kadmin.local

Authenticating as principal root/admin@WAMPLE.COM with password
kadmin.local: addprinc -randkey host/serverl.example.com

WARNING: no policy specified for host/serverl.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "host/serverl.example.com@EXAMPLE.COM" created.
kadmin.local: addprinc -randkey host/testerl.example.com

WARNING: no policy specified for host/testerl.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "host/testerl.example.com@EXAMPLE.COM" created.
kadmin.local:

796 Chapter 16 NFS Secured with Kerberos

2. Add NFS service principals for the server and client machines:

kadmin.local: addprinc -randkey nfs/serverl.example.com

WARNING: no policy specified for nfs/serverl.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "nfs/serverl.example.com@EXAMPLE.COM" created.
kadmin.local: addprinc -randkey nfs/testerl.example.com

WARNING: no policy specified for nfs/testerl.example.com@EXAMPLE.COM;
defaulting to no policy

Principal "nfs/testerl.example.com@EXAMPLE.COM" created.
kadmin.local:

3. Generate the keytab files for the NFS server and client machines:

kadmin.local: ktadd -k /tmp/serverl.keytab nfs/serverl.example.com
[output truncated]
kadmin.local: ktadd -k /tmp/testerl.keytab nfs/serverl.example.com
[output truncated]

4. Copy the keytab files to the /etc/krb5 keytab file on the remote systems:

scp /tmp/serverl.keytab serverl.example.com:/etc/krb5.keytab
scp /tmp/testerl.keytab testerl.example.com:/etc/krb5.keytab

5. Copy the /etc/krb5.conf file from the KDC to all NFS servers and clients:

scp /etc/krb5.conf serverl.example.com:/etc/krb5.conf
scp /etc/krb5.conf testerl.example.com:/etc/krb5.conf

EXERCISE 16-3

Configure a Kerberos-Enabled NFS Share

In this exercise, you'll install an NFS server on a RHEL system and export a share with
Kerberos authentication and encryption. This exercise assumes that you've set up a Kerberos
Key Distribution Center and configured your serverl.example.com and testerl.example.com
virtual machines as described in Exercises 12-5 and 16-2.

1. Make sure the NFS server is installed on serverl.example.com. The easiest way is
with the following command:

rpm -g nfs-utils

2. Ifitisn’t already installed, use the techniques discussed earlier to install the nfs-utils
RPM package.

10.

11.

12.

13.

14.

NFS with Kerberos 797

Start the NFS service and its secure component to provide Kerberos authentication
and encryption services:

systemctl start nfs-server nfs-secure-server

Make sure the services are automatically activated the next time the system boots
with the following command:

systemctl enable nfs-server nfs-secure-server
Create a directory named nfs-secure:
mkdir /nfs-secure

Configure the share in the /etc/exports file to allow read and write permissions to all
clients with Kerberos authentication and encryption:

echo "/nfs-secure *(rw,sec=krb5p)" >> /etc/exports
Apply the change:

exportfs -r

Ensure that the nfs service is enabled on the firewall default zone:

firewall-cmd --list-all

If it isn't enabled, add the service to the default zone:

firewall-cmd --permanent --add-service=nfs
firewall-cmd --reload

On the testerl.example.com client, ensure that the nfs-utils RPM package is
installed.

Start the nfs-secure service and activate the service at boot:

systemctl start nfs-secure
systemctl enable nfs-secure

Create a directory for the server share called /mnt/nfs:
mkdir /mnt/nfs
Add the following line to /etc/fstab:

192.168.122.50: /nfs-secure /mnt/nfs nfs sec=krb5p 0 0

Run the mount -a command to mount the share.

798 Chapter 16 NFS Secured with Kerberos

SCENARIO & SOLUTION

You're having trouble configuring a firewall for
NES.

Enable the nfs service by running firewall-cmd
--add-service=nfs.

You want to prohibit read/write access to
shared NFS directories.

Make sure shares are configured with the ro
parameter in /etc/exports.

You need to set up automatic mounts of a
shared NFS directory.

Configure the shared directory in /etc/fstab.

You want to export an NFS share with Kerberos
authentication and encryption.

Export and mount the share with the sec=krb5p
option. Ensure that your systems are set up for
Kerberos authentication, as described in Appendix A.

You need to start NFS services to export an
NFES share with Kerberos authentication.

Enable the services nfs-server and nfs-secure-server
on the NFS server, and nfs-secure on the clients.

CERTIFICATION SUMMARY ‘

NES allows you to share filesystems between Linux and Unix computers. It is an efficient
way to share files between such systems, and it can be secured with Kerberos authentication

and encryption.

While RHEL 7 supports NFSv4, it also supports access by NFSv3 clients. It’s controlled
by a group of systemd units. The service unit nfs-server is required to start the NFS
daemon. Kerberos-based authentication and encryption are controlled by the rpcsvegssd
and rpcgssd daemons, which depend, respectively, on the nfs-secure-server service unit
(on the server) and nfs-secure (on the client). The global options for the NFS service are
set up primarily in the /etc/sysconfig/nfs file. Related commands include exportfs and

showmount.

In most cases, you can set up a basic configuration of NFS via a straightforward one-line

directive in the /etc/exports file. Once the NFES service is running, such exports are activated
through the exportfs command. Firewalls should be configured by enabling the nfs service
through the appropriate zone. Active ports and services can be confirmed with the rpcinfo -p
command.

Generally, the default configuration of SELinux supports basic NFS operation. You can
configure security for mounted NFS directories as if the mounted filesystems were local.
You can also automate NFS mounts in /etc/fstab or through the automounter. The current
status of NFS is documented in various files in the /var/lib/nfs and /proc/fs/nfsd directories.

Two-Minute Drill 799

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 16.

The Network File System (NFS) Server

Q

Qa

(]

NES is the standard for sharing files between Linux and Unix computers. RHEL 7
supports NFS versions 3 and 4; NFSv4 is the default.

Key NFS daemons are rpc.mountd for mount requests, rpc.rquotad for quota
requests, and the nfsd daemon.

You can find configuration options for these processes in the /etc/sysconfig/nfs file.

NES shares are configured in /etc/exports and activated with the exportfs -r
command.

Firewalls can be set by enabling the nfs service through the appropriate zone in
firewalld.

In most cases, required booleans for SELinux are already active.
To disallow read/write access in SELinux, disable the nfs_export_all_rw boolean.

When NEFS directories are mounted, they should appear seamless. User permissions
work in the same way as with a local directory.

Test an NFS Client

Qa

00O

Clients can mount permanent NFS shares through /etc/fstab.
You can review shared directories on a client with the showmount command.
The mount command is designed to mount directories shared via NFSv4 and NFSv3.

If an NES server fails, it can “hang” an NFS client. The soft and timeo options to
the mount command can help prevent such hangs. However, using them would risk
compromising the integrity of the data if a system crashes.

NFS with Kerberos

M|
a

Qa

By default, NFS is insecure because it trusts the UID/GID sent by clients.

When integrated with Kerberos, NFS can provide strong authentication (sec=krb5),
communication integrity (sec=krb5i), and encryption (sec=krb5p).

To configure Kerberos-based NFS shares, specify the appropriate security parameter
via the sec= option on the NFS clients and server.

800 Chapter 16 NFS Secured with Kerberos

U The nfs-secure-server service must be running on the NFS server to provide
Kerberos services.

O The nfs-secure service must be running on the NFS clients to support Kerberos-
authenticated mounts.

O NES with Kerberos requires you to set up a KDC, as explained in Chapter 12.

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. As no multiple choice questions appear on the Red Hat exams, no multiple choice questions
appear in this book. These questions exclusively test your understanding of the chapter. It is okay if you
have another way of performing a task. Getting results, not memorizing trivia, is what counts on the
Red Hat exams. There may be more than one answer to many of these questions.

The Network File System (NFS) Server

1.

In the /etc/exports file, you want to export the /data directory as read-only to all hosts and grant
read and write permission to the hostname superv in the example.com domain. What directive
would you enter in that file?

Once you've configured /etc/exports, what command exports these shares?

What port number is associated with the portmapper?

What port number is associated with NFSv4?

What is the NFS configuration option that supports access by the root administrative user?

Lab Questions 801

Test an NFS Client

6. You're experiencing problems with NFS clients for various reasons, including frequent downtime
on the NFS server and network disconnections between NFS clients and servers. What type of
mounting can prevent NFS clients from hanging and retrying NFS requests indefinitely?

7. What is the command that can display NFS shared directories from the outsiderl.example.org system?

NFS with Kerberos

8. Which service should you start on an NES client to support Kerberos-based authentication via the
rpcgssd daemon?

9. What directive should you include to mount an NFS share with Kerberos authentication and
encryption?

10. What directive should you add to /etc/exports to export an NFS share with standard file access
permissions and optionally with Kerberos authentication?

LAB QUESTIONS

Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’'s assumed that you're running these exercises on virtual machines such as KVM. For this
chapter, it’s also assumed that you may be changing the configuration of a physical host system for such
virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this chapter are available in
the Chapter 16/ subdirectory from the media that accompanies the book. In case you haven't yet set up
RHEL 7 on a system, refer to Chapters 1 and 2 for installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

802 Chapter16 NFS Secured with Kerberos

SELF TEST ANSWERS

The Network File System (NFS) Server

1. The following entry in /etc/exports would export the /data directory as read-only to all hosts and
grant read and write permission to the host superv in the example.com domain:
/data superv.example.com(rw, sync) (ro,sync)
2. Once you've revised /etc/exports, the exportfs -a command exports all filesystems. Yes, you can
also re-export filesystems with the exportfs -r command.
3. The port number associated with the portmapper is UDP port 111.
The port number associated with NFSv4 is TCP port 2049.
The NFS configuration option that supports access by the root administrative user is no_root_squash.
Test an NFS Client
6. Soft mounting and timeouts associated with the soft and timeo options can prevent clients from
hanging and retrying NFS requests indefinitely.
7. The command that can display NFS shared directories from the named remote system is
showmount -e outsiderl.example.org.
NFS with Kerberos
8. You should start the nfs-secure server to provide support for Kerberos-based authentication on a
client via the rpcgssd daemon.
9. The directive that you should include to mount an NES share with Kerberos authentication and
encryption is sec=krb5p.
10. You can export the share with the sec=sys:krb5p security option.

Lab Answers 803

LAB ANSWERS

Lab 1

When this lab is complete, you'll see the following features on the system with the NFS server:

B The nfs-utils RPM in the list of installed packages.

B An active NFS service, which can be confirmed in the output to the systemctl status nfs-server
command.

B A zone-based firewall that supports access to the nfs service. It should also be limited by IP
address network.

In addition, you'll be able to perform the following tasks from the NFS client:

B You can run the showmount -e serverl.example.com command, where serverl.example.com is
the name of the NFS server system (substitute if and as needed).

B You can mount the shared directory as the root user with the mount -t nfs serverl.example
.com:/shared /testing command.

B The first time the share is mounted, you should be able to copy local files as the root user to the
/testing directory.

B The second time the share is mounted, with the no_root_squash directive in effect, such
copying should not work, at least from the client root user account.

Lab 2

This lab is the first step toward creating a single /home directory for your network. Once you get it
working on a single client/server combination, you can set it up on all clients and servers. You can
then use an LDAP server to set up a single Linux/Unix database of usernames and passwords for the
network. Alternatively, matching usernames (with matching UID and GID numbers) on different local
systems should also work. On the NFS server, take the following steps:

1. Setup a couple of users and identifying files such as userl and userl.txt on the system being
used as the NFS server.

2. Share the /home directory in /etc/exports on the serverl.example.com client. You can do this in
this file with the following command:

/home *.example.com(rw, sync)
3. Export this directory with the following command:

exportfs -a

804 Chapter 16 NFS Secured with Kerberos

4. Make sure that the exported /home directory shows in the export list. On the local server, you
can do this with the following command:

showmount -e serverl.example.com

5. If problems appear during this process, check the /etc/exports file carefully. Make sure there
aren’t extra spaces in /etc/exports, even at the end of a code line. Make sure the NFS service is
actually running with the systemctl status nfs-server command.

6. You may also want to check your firewall and make sure the appropriate services described in
this chapter are running with the rpcinfo -p command.

7. Remember to make sure that the NFS server starts automatically the next time the system is
booted. One way to do so is with the following command:

systemctl enable nfs-server

Now on the NFS client, take the following steps to connect to the shared /home directory:

1. Make sure you can see the shared /home directory. You can substitute the IP address of the
serverl.example.com system:

showmount -e serverl.example.com

2. Now mount the share that is offered on the local /remote directory:

mount -t nfs serverl.example.com:/home /remote

3. Run the mount command. If you see the NFS mount, all is well.

4. Examine the mounted /home directory. Look for the *.txt files created earlier in this lab. If you
find those files, you've successfully created and connected to the /home directory share.

5. To make the mount permanent, add it to the /etc/fstab file on the client. Once you've added a
line such as the following to that file, the Linux client automatically mounts the shared /home
directory from the NFS server the next time the client is booted, with the soft option and a
timeout of 100 seconds, which can help prevent a “hang”:

serverl.example.com: /home /remote nfs soft,timeout=100 0 O

Lab 3

The reference to SELinux is deliberate and should provide an important hint. You may not have enough
time to modify every directory shared and configured in the /etc/exports file on each NES server. One
simple way to prevent writes to shared NFS directories is to deactivate the associated SELinux boolean,
with the following command:

setsebool -P nfs_export_all rw off

You should then be able to test the result with the next mounting of a shared NFS directory.

Lab Answers 805

Lab 4

This lab is an extension of Exercise 16-2 and tries to familiarize you with some of the common
problems when configuring NFES shares with Kerberos.

Export the share with the sec=sys:krb5:krb5i:krb5p security option to provide optional Kerberos
authentication, communication integrity, and encryption. See if the testerl.example.com client can
mount the NFS share using any of the available security methods. Reproduce the troubleshooting sce-
narios described in the lab and take note of the error messages you encounter.

	__DdeLink__635_2009801039

