Chapter 9

RHCSA-Level System
Administration Tasks

CERTIFICATION OBJECTIVES

9.01 Elementary System Administration 9.03 Local Log File Analysis
Commands ve Two-Minute Drill

9.02 Automate System Administration: Q&A SelfTest
cron and at

his final RHCSA chapter covers functional system administration tasks not already covered
in other chapters. It starts with a discussion of process management and continues with
the use of archive files.

In addition, this chapter helps you automate repetitive system administration tasks.
Some of these tasks happen when you want to have a “life,” others when youd rather be
asleep. In this chapter, you'll learn how to schedule both one-time and periodic execution
of jobs. This is made possible with the cron and at daemons. In this case, “at” is not a

444 Chapter9 RHCSA-Level System Administration Tasks

preposition, but a service that monitors a system for one-time scheduled jobs. In a similar
fashion, cron is a service that monitors a system for regularly scheduled jobs.

When you're troubleshooting, system logging often provides the clues you need to solve a
lot of problems. The focus in this chapter is local logging.

INSIDE THE EXAM

System Administration These other objectives are more closely

. . . related to system administration:
Administrators work on Linux systems in

a number of ways. In this chapter, you'll B Identify CPU/memory-intensive
learn various methods for meeting the processes, adjust process priority with
following RHCSA objectives. The first renice, and kill processes

of these objectives involves fundamental

command skills: B Schedule tasks using at and cron

Finally, you will look at where to find
information logged by the systemd journal and

uncompress f e R £ rsyslog. The related RHCSA objective is
gzip, and bzip2

B Archive, compress, unpack, and

B Locate and interpret system log files
and journals

CERTIFICATION OBJECTIVE 9.01

Elementary System Administration Commands

Several system administration commands in the RHCSA objectives are not covered in
previous chapters. They're associated with system resource management and archives. System
resource management commands allow you to see what processes are running, to check the
resources they’re using, and to kill or restart those processes. Archive commands support the
consolidation of a group of files in a single archive, which can then be compressed.

Elementary System Administration Commands 445

System Resource Management Commands

Linux includes a variety of commands that can help you identify those processes that are

monopolizing a system. The most basic of those commands is ps, which provides a snapshot

of currently running processes. Those processes can be ranked with the top command,
which can display running Linux tasks in order
of their resource usage. With top, you can

identify those processes that are using the most
ée.am CPU and RAM memory. Commands that can

[®atch adjust process priority include nice and renice.
The objective related Sometimes it’s not enough to adjust process
to system resource management is to priority, at which point it may be appropriate to
“identify CPU/memory-intensive processes, send a signal to a process with commands such
adjust process priority with renice, and kill as kill and killall. If you need to monitor system
processes.” usage, the sar and iostat commands can also be
helpful.

on the

Process Management with the ps Command

It’s important to know what’s running on a Linux computer. To help with that task, the ps
command has a number of useful switches. When you're trying to diagnose a problem,
one common practice is to start with the complete list of running processes and then look
for a specific program. For example, if the Firefox web browser were to suddenly crash, you'd
want to kill any associated processes. The ps aux | grep firefox command could then help
you identify the process(es) that you need to kill.

The pgrep command is also useful because it combines the features of ps and
grep. In this case, the pgrep -a firefox command is functionally equivalent to ps

Qob | grep firefox.

The ps command by itself is usually not enough. All it does is identify those processes
running in the current terminal. This command typically returns just the process associated
with the current shell, and the ps command process itself.

To identify those processes associated with a username, the ps -u username command
can help. Sometimes there are specific users who may be problematic for various reasons.
So if you're suspicious of user mjang, the following command can help you review every
process currently associated with that user:

$ ps -u mjang

As an administrator, you may choose to focus on a specific account for various reasons,
such as activity revealed by the top command, described in the next section. Alternatively,
you may want to audit all currently running processes with a command such as the following:

S ps aux

446 Chapter9 RHCSA-Level System Administration Tasks

m Output from the ps aux command

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 134996 6924 7 Ss Feblé 0:18 fusr/lib/system
d/systemd --switched-root --system --deserialize 23
root 2 0.0 0.0 6] o7 S Febl6 0:00 [kthreadd]
root 3 0.0 0.0 6] [Chrd S Febl6 0:00 [ksoftirgd/0]
root 5 0.0 0.0 €] o7 S< Feblg 0:00 [kworker/0:0H]
root 7 0.0 0.0 €] Q7 S Feblg 0:00 [migration/0]
root g 0.0 0.0 €] o7 S Feblg 0:00 [rcu_bh]
root 9 0.0 0.0 €] o7 S Feblt 0:00 [rcuob/0]
root 16 0.6 0.0 €] o7 R Feblg 0:11 [rcu_sched]
root 11 0.0 6.0 €] Q7 S Feblg 0:20 [rcuos/0]
root 12 0.0 0.0 €] Q7 S Feblg 0:06 [watchdog/0]
root 13 0.0 0.0 €] o7 S< Feblg 0:00 [khelper]
root 14 0.0 0.0 €] Q7 S Feblg 0:00 [kdevtmpfs]
root 15 0.0 0.0 €] B 2 S< Feblg 0:00 [netns]
root 16 0.0 0.0 €] @7 S< Feblg @:00 [writeback]
root 17 0.0 0.0 €] Q7 S< Feblg 0:00 [kintegrityd]
root 18 0.0 0.0 €] Q7 S< Feblg 0:00 [bioset]
root 19 0.0 0.0 6] [Chrd S< Febl6 0:00 [kblockd]
root 20 0.0 0.0 6] o7 S Febl6 0:00 [khubd]

0.0 0.0 6] o7 S< Febl6 0:00 [md]

root 21

The ps aux command gives a more complete database of currently running processes,
in order of their PIDs. The a option lists all running processes, the u displays the output
in a user-oriented format, and the x lifts the standard limitation that listed processes must
be associated with a terminal or console. One example is shown in Figure 9-1. While the
output can include hundreds of processes and more, the output can be redirected for
further analysis with commands such as grep. The output columns shown in Figure 9-1
are described in Table 9-1.

Incidentally, you may note that the ps aux command does not include the familiar dash
in front of the aux switches. In this case, the command works with and without the dash
(although slightly differently). Valid command options with the dash are also known as
UNIX or POSIX style; in contrast, options without the dash are known as BSD style. The
following alternative includes current environmental variables for each process:

S ps eux

Processes can be organized in a tree format. Specifically, the first process, with a PID
of 1, is systemd. That process is the base of the tree, which may be shown with the pstree
command. In a few cases, it’s not possible to use a standard kill command to kill a process.
In such cases, look for the “parent” of the process in the tree. You can identify the parent of
a process, known as the PPID, with the following command:

S ps axl

Elementary System Administration Commands 447

TABLE 9-1 Columns of Output from ps aux

Column Title Description

USER The username associated with the process.

PID Process identifier.

%CPU CPU usage, as a percentage of time spent running during the entire lifetime of the process.
%MEM Current RAM usage.

VSZ Virtual memory size of the process in KiB.

RSS Physical memory in use by the process, not including swap space, in KiB.

TTY Associated terminal console.

STAT Process state.

START Start time of the process. If you just see a date, the process started more than 24 hours ago.
TIME Cumulative CPU time used.

COMMAND Command associated with the process, including all its arguments.

The 1 switch displays the output in long format and is not compatible with the u switch.
You can view the PID and PPIDs of all running processes in Figure 9-2.

With the -Z switch (that’s an uppercase Z), the ps command can also identify the
SELinux contexts associated with a process. For example, the following command includes

m Output from the ps axl command

F UIb PID PPID PRI NI VsZ RSS WCHAN STAT TTY TIME COMMAND

4] 1 0 20 0 134996 6924 ep pol Ss ? 0:19 Jusr/1lib/system
d/systemd --switched-root --system --deserialize 23

1 €] 2 o 20 [c] [c] 0 kthrea S ? 0:00 [kthreadd]

1 ¢] 3 2 20 [c] c] 0 smpboo S ? 0:00 [ksoftirgd/0]
1 ¢] 5 2 @ -20 €] @ worker S=< ? 0:00 [kworker/0:0H]
1 ¢] 7 2 -100 - €] @ smpboo S 7 0:00 [migration/0@]
1 €] 8 2 20 ¢] ¢] 0 rcu_gp S ? 0:00 [rcu_bh]

1 ¢] 9 2 20 €] €] 0 rcu_no S 7 0:00 [rcuch/0]

1 €] 16 2 208 [c] €] 0 - R ? 0:11 [rcu_sched]

1 €] kL 2 20 [¢] [¢] 0 rcu_no S 7 0:20 [rcuos/@]

5 ¢] 12 2 -100 - €] @ smpboo S 7 0:06 [watchdog/0]
1 ¢] 13 2 @ -20 €] @ rescue S=< 7 0:00 [khelper]

5 ¢] 14 2 20 €] €] O devtmp S ? 0:00 [kdevtmpfs]

1 ¢] 15 2 @ -20 €] @ rescue S=< ? 0:00 [netns]

1 [c] 16 2 0 -20 [¢] @ rescue S< ? 0:00 [writeback]

1 ¢] 17 2 @ -20 €] @ rescue S=< 7 0:00 [kintegrityd]
1 ¢] 18 2 @ -20 €] @ rescue S=< ? 0:00 [bioset]

1 €] 19 2 0 -20 [c] @ rescue S< 7 0:00 [kblockd]

1 €] 20 2 208 [c] [c] 0 hub_th S ? 0:00 [khubd]

1 ¢] 21 2 @ -20 €] @ rescue S=< ? 0:00 [md]

448 Chapter9 RHCSA-Level System Administration Tasks

the SELinux contexts of each process at the start of the output. If you've read Chapter 4, the
contexts should already seem familiar. For example, contrast the context of the vsFTP server
process with the following excerpt:

system u:system r:ftpd t:s0-s0:c0.c1023 2059 ? Ss 0:00 «
/usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf

Contrast that with the context of the actual daemon. The object role works with the actual
daemon; you can review it with other daemons in the /usr/sbin directory. The vsftpd
daemon works with the associated configuration file with the etc_t type. In contrast, the
vsftpd daemon alone is executable with the ftpd_exec_t type.

-Xwxr-Xr-x. root root system u:object r:ftpd exec t:s0 /usr/sbin/vsftpd

The role of different daemons and their corresponding processes should match and
contrast in a similar fashion. If they don't, the daemon may not work, and the problem
should be documented in the audit log, described in Chapter 4, in the /var/log/audit
directory.

View Loads with the top Task Browser

The top command sorts active processes first by their CPU load and RAM memory usage.
Take a look at Figure 9-3. It provides an overview of the current system status, starting with

m Output from the top command

top - 21:19:27 up 26 days, 26 min, 5 users, load average: 0.75, 0.24, 0.17
Tasks: 169 total, 2 running, 167 sleeping, 0 stopped, 0 zombie

%Cpu(s): 3.7 us, 0.3 sy, 0.0 ni, 95.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.3 st
KiB Mem: 2279972 total, 2100720 used, 179252 free, 2612 buffers

KiB Swap: 1679356 total, 0 used, 1679356 free. 873464 cached Mem

RES SHR %SME TIME+ COMMAND

0 1809068 467208 39644 5 4.0 20.5 70:33.07 gnome-shell
20 0 123648 1572 1092 R 0.3 0.1 0:00.29 top
20 0 134996 6924 3752 S 0.0 0.3 0:19.12 systemd
20 © €] €] 0S5 0.0 0.0 0:00.21 kthreadd
20 0 €] €] 0S5 0.0 0.0 0:00.29 ksoftirgd/0
0 -20 €] €] 0S5 0.0 0.0 0:00.00 kworker/0:0H
rt [C] [C] €] s 0.0 0.0 0:00.00 migration/0
20 0 €] €] 0S5 0.0 0.0 0:00.00 rcu_bh
20 0 €] €] 0S5 0.0 0.0 0:00.00 rcuob/0
20 © €] €] 0S5 0.0 0.0 0:11.42 rcu_sched
20 0 0 0 OR 0.0 0.0 0:20.25 rcuos/0
rt €] €] €] 0S5 0.0 0.0 0:06.64 watchdog/0
0 -20 €] €] 0S5 0.0 0.0 0:00.00 khelper
20 0 €] €] 0S5 0.0 0.0 0:00.00 kdevtmpfs
0 -20 €] €] 0S5 0.0 0.0 0:00.00 netns
0 -20 €] €] 0S5 0.0 0.0 0:00.00 writeback
0 -20 €] €] 0S5 0.0 0.0 0:00.00 kintegrityd

Elementary System Administration Commands 449

Additional Columns of Output from top

Column Title Description

PR The priority of the task. For more information, see the nice and renice commands.

NI The nice value of the task, an adjustment to the priority.

VIRT The virtual memory in KiB used by the task.

RES Physical memory in use by the process, not including swap space, in KiB (similar to
RSS in the output to the ps aux command).

SHR Shared memory in KiB available to a task.

S Process status (same as STAT in the output to the ps aux command).

%CPU CPU usage, as a percentage of time spent running since the last top screen update.

the current uptime, number of connected users, active and sleeping tasks, CPU load, and
more. The output is, in effect, a task browser.

The default sort field is CPU usage. In other words, the process that’s taking the most
CPU resources is listed first. You can change the sort field with the help of the left and right
directional (<, >) keys. Most of the columns are the same as shown in Figure 9-2, as detailed
in Table 9-1. The additional columns are described in Table 9-2.

One problem with the top and ps commands is that they display the status of processes
on a system as a snapshot in time. That may not be enough. Processes may load a system
for just a blip of time, or even periodic blips in time. One way to find more information
about the overall load on a system is with two commands from the sysstat package: sar and
iostat. That system activity information is logged courtesy of the sal and sa2 commands
associated with the /etc/cron.d/sysstat script, which will be described shortly.

System Activity Reports with the sar Command

The sar command, in essence, can be used to provide a system activity report. For example,
Figure 9-4 shows the output of the sar -A command. As you can see, the output shows
various CPU measures at different points in time. The default settings measure CPU load at
10-minute intervals. This system has eight logical CPUs (four cores with hyper-threading
enabled), which are measured individually and as a whole. The large idle numbers shown in
the figure are a good sign that the CPU is not being overloaded; however, the figure shows
the load for less than an hour.

The 10-minute intervals associated with the sar command output are driven by a regular
job in the /etc/cron.d directory. The output from those reports is collected in log files in
the /var/log/sa directory. The filenames are associated with the numeric day of the month;
for example, system activity report status for the 15th of the month can be found in the

450 Chapter9 RHCSA-Level System Administration Tasks

m Output from the sar -A command

Linux 3.10.0-123.el7.x86_64 (Maui) 14/03/15 _xB6_64 (8 CPU)
21:05:31 LINUX RESTART
21:10:01 CPU Susr %nice %sys S%iowait %steal %irg %soft S%guest %gnice %idle
21:20:01 all 6.10 0.31 0.26 0.06 0.00 0.00 0.00 0.24 0.00 859.02
21:20:01 [¢] 0.12 0.04 0.16 0.04 0.00 0.00 0.00 @.34 0.00 99.30
21:20:01 1 0.12 0.e3 0.12 0.10 0.00 0.00 0.00 0.35 0.00 899.27
21:20:01 2 0.14 0.08 0.13 0.03 0.00 0.00 0.00 0.21 0.00 99.41
21:20:01 3 0.16 0.685 0.09 0.01 0.00 0.00 0.00 0.22 0.00 99.47
21:20:01 4 6.01 0.68 .64 0.00 @.00 0.00 0.00 @.15 0.00 98.52
21:20:01 5 0.04 1.44 0.79 0.01 0.00 0.00 0.00 0.01 0.00 897.72
21:20:01 6 0.06 0.688 0.65 06.01 0.00 6.00 0.00 0.39 06.00 85.41
21:20:01 7 0.14 0.13 0.09 0.30 0.00 0.00 0.00 0.26 0.00 99.08
21:30:01 all 6.01 0.e0 .02 0.03 0.00 0.00 0.00 0.03 0.00 99.90
21:30:01 [¢] 0.01 0.e0 0.03 0.03 .00 0.00 0.00 .10 0.00 99.83
21:30:01 1: 06.01 0.680 0.03 0.09 0.00 0.00 0.00 0.03 0.00 $99.85
21:30:01 2 6.01 0.e0 .05 0.01 Q.00 0.00 0.00 @.11 0.00 99.82
21:30:01 3 0.02 0.e0 0.02 0.00 0.00 0.00 0.00 0.02 0.00 99.95
21:30:01 4 0.01 0.00 0.02 6.0l 0.00 0.00 0.00 0.00 0.00 99.96
21:30:01 5 0.01 0.e0 0.01 0.01 0.00 0.00 0.00 .00 0.00 99.97
21:30:01 <] 0.00 0.e0 0.01 0.01 0.00 0.00 0.00 @.00 0.00 99.98
7 0.04 0.00 0.02 0.08 0.00 0.00 0.00 .00 0.00 99.87

21:30:01

sal5 file in the noted directory. However, such reports are normally stored at least for the
last 28 days, based on the following default in the /etc/sysconfig/sysstat file:

HISTORY=28

CPU and Storage Device Statistics with iostat

In contrast to sar, the iostat command reports more general input/output statistics for the
system, not only for the CPU, but also for connected storage devices, such as local drives and
mounted shared NES directories. The example shown in Figure 9-5 displays information for
the CPU and the storage devices since system startup on serverl.example.com.

Both the sar and the iostat command can capture statistics at regular intervals. As an
example, the following command shows CPU and storage device statistics every
five seconds and stops after a minute (12 reports):

iostat 5 12

m [root@serverl ~]# iostat
Linux 3.10.0-123.13.2.e17.x86_64 (serverl.example.com) 14/03/15 _xB86_64_

(1 CPU)

CPU and storage

devi tatisti avg-cpu: Suser S%nice S%system S%iowalt Ssteal %idle

evice statistics .88 0.81 0.18 0.08 0.82 98.92

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
vda 0.85 1.99 4.56 1051023 2405632
dm-0 0.85 1.84 4.56 970234 2403513
dm-1 0.00 0.00 0.00 1464 0

[root@serverl ~1# |

Elementary System Administration Commands 451

Variations on sar with sal and sa2

The sal and sa2 commands are often used to collect system activity report data. In the
/etc/cron.d/sysstat script, the sal command is used to gather system activity data every

10 minutes. In that same cron file, the sa2 command writes a daily report in the /var/log/sa
directory. As noted in the script, that report is processed every day, at seven minutes before
midnight.

nice and renice

The nice and renice commands can be used to manage the priority of different processes.
Whereas the nice command is used to start a process with a different priority, the renice
command is used to change the priority of a currently running process.

Process priorities in Linux specify numbers that seem counterintuitive. The range of
available nice numbers can vary from —20 to 19. The default nice number of a process is
inherited from the parent and is usually 0. A process given a priority of 19 will have to wait
until the system is almost completely free before taking any resources. In contrast, a process
given a priority of —20 takes precedence over all other processes. In practice, this is true for
almost all processes because “real-time” tasks take precedence over the lowest nice value of
—20. But this is outside of the scope of the RHCSA exam, so ignore the existence of real-
time processes for now, and for the sake of this discussion assume that all normal processes
can be assigned a nice value from —20 to 19.

The nice command prefaces other commands. For example, if you have an intensive
script to be run at night, you might choose to start it with a command like the following:

$ nice -n 19 ./intensivescript

This command starts the noted script with the lowest possible priority. If started at night (or
at some other time when a system is not loaded by other programs), the script is run until
just about any other job, such as a script in one of the /etc/cron.* directories, is scheduled
for execution. Because such scripts are run on a schedule, they normally should take priority
over some user-configured programs.

Sometimes a program is just taking up too many resources. If you don’t want to kill a
process, you can lower its priority with the renice command. Normally, the easiest way to
identify a process that’s taking up too many resources is with the top command. Identify
the PID that’s taking up too many resources. That PID number is in the left-hand column
of the output.

If the PID of your target process is 1234, the following command would change the nice
number of that process to 10, which gives that process a lower priority than the default of 0:

renice -n 10 1234

452 Chapter9 RHCSA-Level System Administration Tasks

If you want to decrease the nice level of a process, you must run renice as root. Even
though the output of the command refers to the “priority; it really is just listing the old and
new “nice” numbers for the process:

1234: old priority 0, new priority, 10

The new nice number is shown in the output to the top command, under the NI column.

Process Killing Commands

Sometimes, it’s not enough to reprioritize a process. Some processes can just overwhelm
a system. In most cases, you can stop such difficult processes with the kill and killall
commands. In many cases, you can kill a process directly from the top task browser.

If there’s a situation where a process is taking up a lot of memory or CPU, it’s probably
slowing down everything else running on that system. As shown in Figure 9-6, Firefox has
loaded the CPU of the noted system pretty heavily. If it were unresponsive, we'd press k
from the top task browser.

As shown in the figure, the k command reveals the PID To Signal/Kill: prompt, where
we enter the PID of the Firefox process or accept the default of 4537, which appears to be
Firefox. It applies the default signal (SIGTERM) to the process with that PID number.

Of course, you could apply the kill command directly to a PID number. For example, the
following command is equivalent to the steps just described in the top task browser:

kill 4537

m top - 13:57:44 up 10 min, 3 users, load average: 0.29, 0.32, 0.25
Tasks: 257 total, 1 running, 256 sleeping, 0 stopped, 0 zombie
%Cpu(s): 9.6 us, 1.6 sy, 0.0 ni, 88.7 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

The top task KiB Mem: 16153912 total, 3167324 used, 12986588 free, 1212 buffers

browser with KiB Swap: 16383316 total, 0 used, 16383316 free. 915604 cached Mem

PID to signal/kill [default pid = 4537]
heavy Firefox load 1D R NI VIRT RES SHR S %CPU S%MEM TIME+ COMMAND
20 @ 2357456 613972 57400 S 85.5 3.8 0:27.09 firefox
3375 alex 9 -11 1147288 24136 17980 S 4.3 0.1 0:06.18 pulseaudio
2867 root 20 0 213992 24264 12312 S 143 92 0:18.29 Xorg
3443 alex 20 0 1800404 110844 34464 S 1.3 0.7 0:27.82 gnome-shell
3762 alex 20 B 622768 21156 12856 S 0.7 0.1 0:00.82 gnome-term+
2846 gemu 20 B 5688400 691360 7468 S 0.3 4.3 0:41.09 gemu-kvm
3471 alex 20 0 461276 5672 3468 S 8.2 0.0 0:00.39 ibus-daemon
1 root 20 B 134836 65900 3776 S 0.0 0.0 0:01.31 systemd
2 root 20 6] 6] 6] S 0.0 0.0 0:00.00 kthreadd
3 root 20 6] 6] 6] S 0.0 0.0 0:00.00 ksoftirgd/0
5 root 0 -20 [c] [c] 0 s 0.0 0.0 0:00.00 kworker/0:+
7 root rt [c] €] [c] B s 0.0 0.0 0:00.04 migration/0
8 root 20 6] 6] 6] S 0.0 0.0 0:00.00 rcu_bh
9 root 20 [c] [c] [c] B s 0.0 0.0 0:00.00 rcuch/0
10 root 20 [c] [c] [c] gs 0.0 0.0 0:00.00 rcuch/1
11 root 20 [c] [c] [c] B s 0.0 0.0 0:00.00 rcuch/2
12 root 20 [c] [c] €] 0 s 0.0 0.0 0:00.00 rcuch/3

Elementary System Administration Commands 453

A List of Common POSIX Signals

Signal Name Signal Number Description

SIGHUP Configuration reload.

SIGINT Keyboard interrupt (CTRL-C). Causes program termination.

SIGKILL Terminates a program immediately.

SIGQUIT 15 Similar to SIGKILL, but the program can ignore or handle the
signal to release existing resources and perform a clean termination.

SIGCONT 18 Resumes a suspended process.

SIGSTOP 19 Temporarily suspends the execution of a process.

The kill command can be run by the owner of a process from his account. Thus, user alex
could run the kill 4537 command from his regular account because he has administrative
privileges over processes associated with his username.

Despite its name, the kill command can send a wide variety of signals to different processes.
For a full list, run the kill -1 command or type man 7 signal. Table 9-3 lists some of the most
common signals.

Before the advent of systemd and scripts in the /etc/init.d directory, the kill -1 command
was used to send a configuration reload signal to service daemons. For example, if the PID
number of the main process associated with the Apache web server is 2059, the following
command is functionally equivalent to the systemctl reload httpd command:

kill -1 2059

Without the -1 switch (and that’s a dash number 1), the kill command, under normal
circumstances, would terminate the given process. In this case, it would terminate the
Apache web server. But sometimes, processes get stuck. In some such cases, the kill
command does not work by itself. The process continues running. In that case, you can
try two things.

First, you could try the kill -9 command, which attempts to stop a process “uncleanly”
by sending a SIGTERM signal. If it is successful, other related processes may still remain in
operation.

Sometimes, a number of processes are running under the same name. For example,
as you'll see in Chapter 14, the Apache web server starts several processes that run
simultaneously. It’s at best inefficient to kill just one process; the following command would
kill all currently running server processes, assuming no other issues:

killall httpd

454 Chapter9 RHCSA-Level System Administration Tasks

Archives and Compression

Linux includes a variety of commands to archive groups of files. Some archives can be
reprocessed into packages such as RPMs. Other archives are just used as backups. In
either case, archives can be a terrific convenience, especially when compressed. This
section explores the archive and compression commands specifically cited in the RHCSA
objectives. These “essential tools” include the gzip, bzip2, tar, and star commands.

gzip and bzip2

The gzip and bzip2 commands are functionally similar as they compress and decompress
files, just using different algorithms. The gzip command uses the DEFLATE algorithm,
whereas the bzip2 command uses the Burrows-Wheeler block sorting algorithm. While
they both work well, the bzip2 command has a better compression ratio. For example,
either of the two following commands could be used to compress a big document file
named big.doc:

gzip big.doc
bzip2 big.doc

This adds a .gz or a .bz2 suffix to the file, compressed to the associated algorithms. With
the -d switch, you can use the same commands to reverse the process:

gzip -d big.doc.gz
bzip2 -d big.doc.bz2

As an alternative, the gunzip and bunzip2 commands can be used for the same purpose.

tar

The tar command was originally developed for archiving data to tape drives. However, it’s
commonly used today for collecting a series of files, especially from a directory, in a single
archive file. For example, the following command backs up the information from the
/home directory in the home.tar.gz file:

tar czvf home.tar.gz /home

Like the ps command, this is one of the few commands that does not require a dash in
front of the switch. This particular command creates (c) an archive, compresses (z) it, in
verbose (v) mode, with the filename (f) that follows. Alternatively, you can extract (x) from
that file with the following command:

tar xzvf home.tar.gz /home

Elementary System Administration Commands 455

The compression specified (z) is associated with the gzip command; if you wanted to use
bzip2 compression, substitute the j switch. The tar command can store and extract access
control list settings or SELinux attributes with the --selinux option.

If you have a tar archive created without the --selinux option, you can compensate. You
can use commands such as restorecon, as described in Chapter 4, to restore the SELinux
contexts of an archive.

star

The star command gained some popularity because it was the first to introduce support for
archiving files in a SELinux system. As the star command is not normally installed, you'll
need to install it; one method is with the following command:

yum install star

Unfortunately, the star command doesn’t quite work in the same fashion as tar. If you
ever have to use the star command, do practice the command. For example, the following
command would create an archive, with all SELinux contexts, from the current /home
directory:

star -xattr -H=exustar -c -f=home.star /home/

The -xattr switch saves the extended attributes associated with SELinux. The
-H=exustar switch records the archive using the exustar format, which allows you to store
ACLs if the -acl option is specified. The -c creates a new archive file. The -f specifies the
name of the archive file.

Once the archive is created, it can be unpacked with the following command, which
extracts the archive:

star -x -f=home.star

If desired, the archive can be compressed with the aforementioned gzip or bzip2
command, or from star with the -z or -bz command-line option. The star -x command can
detect and restore files from archives configured with various compression schemes. For
example, based on a gzip-compressed archive, the star command unpacks that archive, as
noted by the following log information message:

star: WARNING: Archive is 'gzip' compressed, trying to use the -z option.

456 Chapter9 RHCSA-Level System Administration Tasks

CERTIFICATION OBJECTIVE 9.02

Automate System Administration: cron and at

The cron system is essentially a smart alarm clock. When the alarm sounds, Linux runs
the commands of your choice automatically. You can set the alarm clock to run at all sorts

Datch
Because cron always

checks for changes, you do not have to
restart cron every time a change has been
made.

of regular time intervals. Many cron jobs are
scheduled to run during the middle of the night,
when user activity is lower. Of course, that timing
can be adjusted. Alternatively, the at system
allows users to run the commands of their choice,
once, at a specified time in the future.

RHEL 7 installs the cron daemon by default
and incorporates the anacron system in cron.
The cron daemon starts jobs on a regular
schedule. The anacron system helps the cron

daemon work on systems that are powered off at night. This ensures that important jobs are
always run, even if a system was powered off for a period of time.

The cron system is configured to check the /var/spool/cron directory for jobs by user.
In addition, it incorporates jobs defined in the /etc/anacrontab file, based on the Oanacron
script in the /etc/cron.hourly directory. It also checks for scheduled jobs for the computer
described in the /etc/crontab file and in the /etc/cron.d directory.

The System crontab and Components

The /etc/crontab file is set up in a specific format. Each line can be blank, a comment (which
begins with #), a variable, or a configuration line. Naturally, blank lines and comments
are ignored. In some Linux distributions, that file includes a schedule of jobs. In RHEL 7,
the default crontab file just includes the format for other related configuration files.
Users run regular commands. Anyone who runs a new process, whether it be you or

a daemon, inherits an “environment” that is made of various environmental variables. To
see the environmental variables for the current user, run the env command. If that user is
your account, some of the standard variables in RHEL include HOME, which should match
your home directory, SHELL, which should match the default shell, and LOGNAME as the

username.

Other variables can be set in the /etc/crontab and other cron files (in /etc/cron.d,

/etc/cron.daily, and so on):

Variable=Value

Automate System Administration: cron and at

457

Some variables are already set for you. For example, MAIL is /var/spool/mail/michael if
your username is michael, LANG is en_US.UTEF-8, and PATH is where the shell looks for
commands. You can set these variables to different values in various cron configuration files.

For example, the default /etc/crontab file includes the following variables:

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

Note that the values of PATH and MAILTO are different from standard environment
variables. The PATH variable in a cron configuration file may be different from the PATH
variable associated with a shell. In fact, the two variables are independent. Therefore, you'll

want to specify the exact path of every command in each cron configuration file if it isn’t in
the crontab PATH.

on the

Qob

The MAILTO variable can help you administer several Linux systems. The cron
daemon sends by e-mail any output that a job sends to stdout or stderr. Just add
a line such as MAILTO=me@example.net to route all the output of cron jobs to
that e-mail address.

The format of a line in /etc/crontab is now detailed in comments, as shown in Figure 9-7.

Each of these columns is explained in more detail in Table 9-4.

If you see an asterisk in any column, the cron daemon runs that command for all possible
values of that column. For example, an * in the minute field means that the command is run

every minute during the specified hour(s). Consider the example shown here:

1

5

3 4 * 1s

This line runs the Is command every April 3 at 5:01 A.m. The asterisk in the day of week
column simply means that it does not matter what day of the week it is; crontab still runs
the Is command at the specified time.

FIGURE 9-7

The format of a
crontab

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

For details see man 4 crontabs

Example of job definition:

T minute (@ - 59)

| - hour (@ - 23)

o I day of month (1 - 31)

- B month (1 - 12) OR jan,feb,mar,apr ...
| |

ri,sat

#0000 ||

#* * * * * yser-name command to be executed

| | .---- day of week (0@ - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,f

458 Chapter9 RHCSA-Level System Administration Tasks

L aE Field Value

Columnsin a cron minute 0-59.

Configuration File hour Based on a 24-hour clock; for example, 23 = 11 p.m.
day of month 1-31.
month 1-12, or Jan, Feb, Mar, and so on.

day of week 0-7 (where 0 and 7 are both Sunday), or Sun, Mon, Tue, and so on.

command The command to be executed; in a system cron job file, this is
preceded by the username to run the command as.

The entries associated with the cron daemon are flexible. For example, a 7-10 entry in the
hour field would run the specified command at 7:00 A.m., 8:00 A.M., 9:00 A.M., and 10:00 A.M.
A list of entries in the minute field, such as 0,5,10,15,20,25,30,35,40,45,50,55, would run
the specified command every five minutes. But that’s a lot of numbers. The entry */5 in the
minute field would lead to the same result. The cron daemon also recognizes abbreviations
for months and the day of the week.

The actual command is the sixth field. You can set up new lines with a percent (%)
symbol. All the text after the first percent sign is sent to the command as standard input.
This is useful for formatting standard input. The following is an example of a cron file:

crontab -1

Sample crontab file

#

Force /bin/bash to be my shell for all of my scripts.
SHELL=/bin/bash

Run 15 minutes past Midnight every Saturday

15 0 * * sat SHOME/scripts/scary.script

Do routine cleanup on the first of every Month at 4:30 AM
30 4 1 * * /usr/scripts/removecores >> /tmp/core.tmp 2>>&1
Mail a message at 10:45 AM every Friday

45 10 * * Fri mail -s "Project Update" employees@example.com
%Can I have a status

update on your project?%%Your Boss.%

Every other hour check for alert messages

0 */2 * * * /usr/scripts/check.alerts

Hourly cron Jobs

Now it’s time for some sample cron files. The files and scripts discussed are limited to those
seen on the serverl.example.com system. A number of different packages add their own

Automate System Administration: cron and at 459

cron jobs. Certain jobs associated with the cron daemon are run every hour, based on the
Ohourly script in the /etc/cron.d directory. This file includes the same variables as the
/etc/crontab file just described. For hourly jobs, it includes one line:

01 * * * * root run-parts /etc/cron.hourly

Given the information provided in the preceding section, you should be able to read this
line. The run-parts command loads each script in the directory that follows; the scripts
in that directory are executed as the root user. Of course, the first five columns specify the
time; the scripts are run at one minute past the hour, every hour, every day, every month, on
each day of the week.

The script of interest in the /etc/cron.hourly directory is Oanacron, which reviews the
contents of the /var/spool/anacron/cron.daily file to see if the anacron command has been
run in the current day. If not, and if the system is not running on battery (for example, on
a laptop disconnected from main power), the /usr/sbin/anacron -s command is executed,
which runs scripts defined in the /etc/anacrontab configuration file.

The system status script described earlier is stored in the /etc/cron.d/sysstat file. There
are two active commands in that file. The first command, sal, is run every 10 minutes, as
depicted by */10. This command is run every hour, every day, and so on.

*/10 * * * * yoot /usr/libé6é4/sa/sal 1 1

The second command, sa2, is run at 53 minutes after the hour, on the 23rd hour of each
day. In other words, the system activity report is not collected until 11:53 p.Mm. at night.

53 23 * * * root /usr/libé4/sa/sa2 -A

Regular Anacron Jobs

The Oanacron script in the /etc/cron.hourly directory described earlier executes the
anacron command after a system has been powered up. That command executes three
scripts defined in the /etc/anacrontab file. This includes three environment variables that
should seem familiar:

SHELL=/bin/sh
PATH=/sbin: /bin:/usr/sbin:/usr/bin
MAILTO=root

The SHELL directive may appear a bit different, but the Is -1 /bin/sh command should
confirm a soft link to the /bin/bash command, which starts the default bash shell. The
following directive means that scripts are run at a random time of up to 45 minutes after the
scheduled time:

RANDOM DELAY=45

460 Chapter9 RHCSA-Level System Administration Tasks

With the following directive, anacron jobs are run only between the hours of 3 A.m. and
10:59 p.m.

START HOURS RANGE=3-22

While the format of /etc/anacrontab is similar to the format listed in a script for a regular
cron job, there are differences. The order of data in each line is specified by the following
comment:

#period in days delay in minutes job-identifier command

The period in days is 1, 7, or @monthly, because the number of days in a month varies.
The delay in minutes is associated with the RANDOM_DELAY directive. Since the
/etc/anacrontab file is executed through the /etc/cron.d/Ohourly script, the clock starts one
minute after the hour, after the system has been started. The delay in minutes comes before
the RANDOM_DELAY directive.

In other words, based on the following line, the scripts in the /etc/cron.daily directory
may be run anywhere from 5 to 50 minutes after the anacron command is run, or 6 to
51 minutes after the hour:

1 5 cron.daily nice run-parts /etc/cron.daily

For more examples, review some of the scripts in the /etc/cron.daily directory. Here are
three key scripts you should investigate:

B logrotate Rotates log files
B mlocate Updates the “locate” file database
B man-db.cron Creates or updates the mandb database

Setting Up cron for Users

Each user can use the crontab command to create and manage cron jobs for their own
accounts. Four switches are associated with the crontab command:

B -uuser Allows the root user to edit the crontab of another specific user.
-1 Lists the current entries in the crontab file.

-r Removes cron entries.

-e Edits an existing crontab entry. By default, crontab uses vi, unless a different
editor is specified via the EDITOR environment variable.

To set up cron entries on your own account, start with the crontab -e command. Normally,
it opens a file in the vi editor, where you can add appropriate variables and commands, similar
to what you've seen in other cron job files.

Automate System Administration: cron and at 461

Once the cron job is saved, you can confirm the change with either the crontab -1
command or, as the root user, by reading the contents of a file in the /var/spool/cron
directory associated with a username. All current cron jobs for a user can be removed with
the crontab -r command.

EXERCISE 9-1

Create a cron Job

In this exercise, you will modify your crontab to read a text file at 1:05 p.M. every Monday in
the month of January. To do this, use the following steps:

1. Login as a regular user.

2. Create a ~/bin directory. Add a file called taxrem.sh, which reads a text file from
your home directory. A command such as the following in the taxrem.sh file
should suffice:

#!/bin/bash
cat /home/michael/reminder.txt

Make sure to add appropriate lines to the reminder.txt file in your home directory;,
such as “Don’t forget to do your taxes!” Make sure the taxrem file is executable with
the chmod +x ~/bin/taxrem.sh command.

3. Open up the crontab for your account with the crontab -e command.
4. Add an appropriate command to the crontab. Based on the conditions described, it
would read as follows:

5 13 * 1 1 /home/michael/bin/taxrem.sh

5. Don't forget directives such as MAILTO=user@example.com at the start of the
crontab.

6. Save and exit. Run crontab -1 and confirm the existence of the user cron file in the
/var/spool/cron directory. That file should have the same name as the user.

Running a Job with the at System

Like cron, the at daemon supports job processing. However, you can set an at job to be run
once. Jobs in the cron system must be set to run on a regular basis. The at daemon works in
a way similar to the print process; jobs are spooled in the /var/spool/at directory and run
at the specified time.

462 Chapter9 RHCSA-Level System Administration Tasks

Time Period Example Start Time for Jobs

Examples of the at Minutes atnow + 10 minutes In 10 minutes
Command Hours at now + 2 hours In 2 hours
Days at now + 1 day In 24 hours
Weeks at now + 1 week In 7 days
n/a at teatime At 4:00 p.M.
n/a at 3:00 12/21/16 On December 21, 2016, at 3:00 A.M.

You can use the at daemon to run the command or script of your choice. For the purpose
of this section, assume that user michael has created a script named 797.sh in his home
directory to process some airplane sales database.

From the command line, you can run the at time command to start a job to be run at a
specified time. Here, time can be now; in a specified number of minutes, hours, or days; or
at the time of your choice. Several examples are illustrated in Table 9-5.

You can use one of the sample commands shown in Table 9-5 to open an at job. It opens
a different command-line interface, where you can specify the command of your choice. For
this example, assume you're about to leave work and want to start the job in an hour. From
the conditions specified, run the following commands:

$ at now + 1 hour
at> /home/michael/797.sh
at> Ctrl-D

The cTRL-D command exits the at shell and returns to the original command-line
interface. As an alternative, you can use input redirection, as follows:

$ at now + 1 hour < /home/michael/797.sh

The atq command, as shown here, checks the status of the current at jobs. All jobs that
are pending are listed in the output to the atq command:

$ atqg
1 2016-12-21 03:00 a michael

If there’s a problem with the job, you can remove it with the atrm command. For
example, you can remove the noted job, labeled job 1, with the following command:

S atrm 1

Secure cron and at

You may not want everyone to be able to run a job in the middle of the night. You may also
want to restrict this privilege for security reasons.

Automate System Administration: cronand at 463

Users can be configured in /etc/cron.allow and /etc/cron.deny files. If neither of these
files exist, cron usage is restricted to the root administrative user. If the /etc/cron.allow file
exists, only users named in that file are allowed to use cron. If there is no /etc/cron.allow
file, only users named in /etc/cron.deny can’t use cron.

These files are formatted as one line per user; if you include the following entries in
/etc/cron.deny, and the /etc/cron.allow file does not exist, users elizabeth and nancy aren’t
allowed to set up their own cron scripts:

elizabeth
nancy

However, if the /etc/cron.allow file does exist with the same list of users, it takes
precedence. In that case, both users elizabeth and nancy are allowed to set up their own
cron scripts. The range of possibilities is summarized in Table 9-6.

User security for the at system is almost identical. The corresponding security
configuration files are /etc/at.allow and /etc/at.deny. The range of possibilities is
summarized in Table 9-7.

If you're paranoid about security, it may be appropriate to include only desired users in
the /etc/cron.allow and /etc/at.allow files. Otherwise, a security breach in a service account
may allow a “black hat” hacker to run a cron or at script from the associated account.

TABLE 9-6 Security Effects of cron.allow and cron.deny

/etc/cron.deny exists /etc/cron.deny does not exist
/etc/cron.allow Only users listed in /etc/cron.allow Only users listed in /etc/cron.allow
exists can run crontab -e; contents of can run crontab -e.

/etc/cron.deny are ignored.

/etc/cron.allow All users listed in /etc/cron.deny Only the root user can run
does not exist cannot use crontab -e. crontab -e.

_ Security Effects of at.allow and at.deny

TABLE 9-7

/etc/at.deny exists /etc/at.deny does not exist
/etc/at.allow Only users listed in /etc/at.allow Only users listed in /etc/at.allow can
exists can run the at command; contents run the at command.

of /etc/at.deny are ignored.

/etc/at.allow All users listed in /etc/at.deny cannot Only the root user can run the at
does not exist run the at command. command.

464 Chapter9 RHCSA-Level System Administration Tasks

CERTIFICATION OBJECTIVE 9.03

Local Log File Analysis

An important part of maintaining a secure system is monitoring those activities that take
place on the system. If you know what usually happens, such as understanding when users
log in to a system, you can use log files to spot unusual activity. Red Hat Enterprise Linux
comes with new system-monitoring utilities that can help identify the culprit if there is a
problem.

RHEL 7 comes with two logging systems: a traditional logging service, rsyslog, and an
enhanced logging daemon known as systemd-journald. We briefly discussed systemd
logging in Chapter 5. Thanks to its architecture, systemd can intercept and save all boot and
syslog messages, along with the output that services send to standard error and to standard
output. This is much more than what a traditional syslog server can do. By default, systemd
journal logs are stored temporarily (in a RAM tmpfs filesystem) in the /run/log/journal
directory.

The rsyslog daemon includes the functionality of the kernel and system logging services
used through RHEL 7. You can use the log files thus generated to track activities on a
system. The way rsyslog logs output to files is based on the configuration defined in the
/etc/rsyslog.conf file and on the files in the /etc/rsyslog.d directory.

In many cases, services such as SELinux, Apache, and Samba have their own log files,
defined within their own configuration files. Details are addressed in the chapters associated
with those services.

System Log Configuration File

You can configure what is logged through the /etc/rsyslog.conf configuration file. As shown
in Figure 9-8, it includes a set of rules for different facilities: authpriv, cron, kern, mail, news,
user, and uucp.

Each facility is also associated with several different levels of logging, known as the
priority. In ascending order, log priorities are debug, info, notice, warn, err, crit, alert,
emerg. There’s also a generic none priority that logs no messages of the specific facility; for
example, an authpriv.none directive would omit all authentication messages.

For each facility and priority, log information is sent to a specific log file. For example,
consider the following line from /etc/syslog.conf:

* info;mail.none;authpriv.none;cron.none /var/log/messages

Local Log File Analysis 465

FIGURE 9-8 #### RULES ####

Log all kernel messages to the console.
The rsyslog.conf # Logging much else clutters up the screen.
*
configuration file e /dev/console

Log anything (except mail) of lewvel info or higher.
Don't log private authentication messages!
*.info;mail .none;authpriv.none;cron.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail . * -/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
.emerg romusrmsg:

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.log

This line sends log information from all of the given facilities to the /var/log/messages file.
This includes all facility messages of info level and higher, except for log messages related to
the mail, authpriv (authentication), and cron services.

You can use the asterisk as a wildcard in /etc/syslog.conf. For example, a line that starts
with #.* tells the rsyslogd daemon to log everything. A line that starts with authpriv.*
means you want to log all messages from the authpriv facility.

By default, rsyslogd logs all messages of a given priority or higher. In other words, a
cron.err line will include all log messages from the cron daemon at the err, crit, alert, and
emerg levels.

Most messages from the rsyslogd daemon are written to files in the /var/log directory.
You should scan these logs on a regular basis and look for patterns that could indicate a
security breach. It’s also possible to set up cron jobs to look for such patterns.

Log File Management

Logs can easily become very large and difficult to read. By default, the logrotate utility creates
a new log file on a weekly basis, using the directives in the /etc/logrotate.conf file, which also
pulls in directives from files in the /etc/logrotate.d directory. As shown in Figure 9-9, the
directives in the file are straightforward and well explained by the comments.

466 Chapter9 RHCSA-Level System Administration Tasks

m # see "man logrotate" for details
rotate log files weekly
weekly
Log rotation
configured in
/etc/logrotate.conf

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wimp and btmp -- we'll rotate them here
fvar/log/wtmp {
monthly
create (0664 root utmp
minsize 1M

rotate 1
}
/var/log/btmp {
missingok
monthly
create 0600 root utmp
rotate 1
}

system-specific logs may be also be configured here.

Specifically, the default settings rotate log files on a weekly basis, storing the past four
weeks of logs. New log files are created during the rotation, and older files have the date of
rotation as a suffix. Different provisions are given to wtmp and btmp logs, related to user
login records.

A Variety of Log Files

Various log files and their functionality are described in Table 9-8. These files are created
based on the previously described configuration of the /etc/rsyslog.conf file and of service
configuration files in the /etc/rsyslog.d directory. Some of the log files (such as those in
/var/log/httpd) are created directly by applications. All files shown are in the /var/log directory.
If you haven't installed, activated, or used the noted service, the associated log file may not
appear. In contrast, you may see log files not shown here based on additional installed services.

Local Log File Analysis 467

Standard Red Hat Log Files

Log Files Description

anaconda/* Includes at least five log files: anaconda.log for general installation messages; anaconda
.packaging.log for package installation; anaconda.program.log for calls to external
programs; anaconda.storage.log for storage device configuration and partitioning;
anaconda.ifcfg.log for network adapter initialization; and sometimes, syslog for kernel
messages; and anaconda.xlog for the first start of the GUI server.

audit/ Includes the audit.log file, which collects messages from the kernel audit subsystem.

boot.log Associated with services that start and shut down processes.

btmp Lists failed login attempts; readable with the utmpdump btmp command.

cron Collects information from scripts run by the cron daemon.

cups/ Directory of printer access, page, and error logs.

dmesg Includes basic boot messages.

gdm/ Directory of messages associated with starting via the GNOME Display Manager;
includes login failures.

httpd/ Directory of log files associated with the Apache web server.

lastlog Lists login records; readable with the lastlog command.

maillog Collects log messages related to e-mail servers.

messages Includes kernel logs and messages from other services, as defined in /etc/rsyslog.conf.

pm-powersave.log Log messages related to power management.

ppp/ Directory with Point to Point Protocol logs; usually associated with telephone modems.
rhsm/ Directory with logs from the Red Hat Subscription Manager plugin.

sa/ Directory with system activity reports.

samba/ Directory of access and service logs for the Samba server.

secure Authentication and access messages.

spooler Shows a log file that might include critical messages.

sssd/ Directory of messages associated with the System Security Services daemon.
tallylog Supports pam_tally, which locks out a user after excessive login failure attempts.
up2date Includes log messages from the Red Hat Update Agent.

wtmp List of logins, in binary format; can be read with the utmpdump command.

xferlog Adds messages associated with file transfers from a local FTP server.

Xorg.0.log Notes setup messages for the X Window System; may include configuration problems.

yum.log Logs packages installed, updated, and erased with yum.

468 Chapter9 RHCSA-Level System Administration Tasks

Service-Specific Logs

As suggested earlier, a number of services control their own log files. The log files for the
vsFTP server, for example, are configured in the vsftpd.conf file in the /etc/vsftpd directory.
As noted from that file, the following directive enables the logging of both uploads and
downloads in the /var/log/xferlog file:

xferlog _enable=YES

The logging of other services may be more complex. For example, separate log files are
configured for access and errors in the Apache web server in the /var/log/httpd directory.

EXERCISE 9-2

Learn the Log Files

In this exercise, you'll inspect the log files on a local system to try to identify different
problems.

1. Restart the Linux computer. Log in as the root user. Use the wrong password once.
2. Log in properly with the correct password as the root user.

3. Ina console, navigate to the /var/log directory and open the file named “secure”
Navigate to the “Failed password” message closest to the end of the file. Review what
happened. Close the file.

4. Review other logs in the /var/log directory. Use Table 9-8 for guidance. Look for
messages associated with hardware. What log files are they in? Does that make sense?

5. Most, but not all, log files are text files. Try reading the lastlog file in the /var/log
directory as a text file. What happens? Try the lastlog command. Are you now
reading the contents of the /var/log/lastlog file? Can you confirm this from the
associated man page?

View systemd Journal Log Entries

Aside from initializing the system and managing services, systemd also implements a
powerful logging system. By default, logs are stored in a ring buffer using a binary format
inside the directory /run/log/journal, and they do not persist a system reboot. In Chapter 5
we briefly introduced journalctl and explained how to enable persistent logging. In this
section, we will review some of the basic functionalities of the journalctl command and
show how to perform advanced searches.

Local Log File Analysis 469

One of the main advantages of the systemd journal over rsyslog is that it can store
not just kernel and syslog messages, but also any other output that services send to their
standard output or standard error. You don'’t need to know where a daemon sends its logs
because everything is captured by systemd and logged into the journal. The journal is
indexed so that it can be easily searched using different options.

By default, the journalctl command shows all the messages in the journal in a paged
format, chronologically. It displays messages of err and crit severity in bold, and it shows
alert and emerg lines in red. A useful command switch is -f, which works in a similar way to
the tail -f command, by displaying the last 10 log entries and continuously printing any new
log entries as they are appended to the journal.

You can filter the output of journalctl in several ways. You can use the -p switch to
display messages whose priority is the same or higher than the one specified. As an example,
the following command shows only entries of priority err or above:

journalctl -p err

The command switches --since and --until can restrict the output to a specified time
range. The next examples should be self-explanatory:

journalctl --since yesterday
journalctl --until "2015-03-28 11:59:59"
journalctl --since 04:00 --until 10:59

You can also filter the output by looking at the most recent journal entries via the -n
option. For example, you can run the next command to show the last 20 lines in the journal:

journalctl -n 20

But there’s more. Each entry in the systemd journal has a set of metadata that you can
display with the -o verbose switch. Figure 9-10 shows how a journal entry looks when
enabling verbose output.

The journalctl command can filter the output using any of the fields listed in Figure 9-10.
For example, the following command shows all log entries associated with user ID 1000:

journalctl _UID=1000

Similarly, the next example displays all journal entries related to the nslcd daemon:

journalctl _COMM=nslcd

You can also specify multiple conditions on the same line. As you get more practice with
the journalctl command, you will find that the systemd journal is very robust and flexible,
and can be queried using a myriad of different options.

470 Chapter9 RHCSA-Level System Administration Tasks

m A journal entry with metadata

Sun 2015-03-08 22:01:03.074289 GMT [s=6b28fd9c29aa4618bad99fc63109198e;i=31c97;b
=7afef9ed?7dlc04a0fad954c9ch7chbff99,;m=220188bce86;t=5115ade9c68dd ; x=825a08 55422450
65]

_TRANSPORT=syslog

PRIORITY=3

SYSLOG_FACILITY=3

SYSLOG_IDENTIFIER=nslcd

SYSLOG_PID=11163

PID=11103

UID=65

_GID=55
_COMM=nslcd
EXE=/usr/sbin/nslcd

_CMDLINE=/usr/sbin/nslcd
CAP_EFFECTIVE=0
SYSTEMD_CGROUP=/system.slice/nslcd.service
SYSTEMD_UNIT=nslcd.service
SYSTEMD_SLICE=system.slice
SELINUX_CONTEXT=system_u:system_ r:nslcd_t:s@
BOOT_ID=7afefed7dlc04a00ad954c9chb7chbf o8
MACHINE_ID=b37be8dd26f87ac4badab1525e92b44
_HOSTNAME=serverl .example.com
MESSAGE=[7721c9] <group/member="alex"> no available LDAP server found: Serve
r is unavailable: Transport endpoint is not connected
_SOURCE_REALTIME_TIMESTAMP=1426456863074289

SCENARIO & SOLUTION

A script in a crontab file is not executed. Check /var/log/cron. Ensure that the script has
executable permissions.

Regular users can’t access the crontab Review the cron.allow and cron.deny files in the /etc

command or the at prompt. directory to ensure that users can run the crontab

command. Similarly, to grant users permission to
schedule at jobs, review the at.allow and at.deny files.

Log files don’t include sufficient information. Revise /etc/rsyslog.conf. Focus on the desired facility,
such as authpriv, mail, or cron, and revise the priority
to include more detailed information. Look for log
entries in the systemd journal.

Two-Minute Drill 471

CERTIFICATION SUMMARY

RHEL 7 includes a variety of system administration commands that can help you monitor
and manage the resources used on a system. These commands include ps, top, kill, nice,
and renice. In addition, with the right commands, you can create archives. However, special
command options are required to back up files with specialized attributes such as those
based on ACLs and SELinux.

The cron and at daemons can help you manage what jobs are run on a system on a
schedule. With related configuration files, access to these daemons can be limited to certain
users. While cron configuration files follow a specific format documented in /etc/crontab,
those configuration directives have been integrated with the anacron system that supports
job management on systems that are powered off on a regular basis.

RHEL 7 includes two logging systems—the systemd journal and the rsyslog daemon—
that are configured primarily for local systems in the /etc/rsyslog.conf file. Log entries are
normally collected by systemd in the /run/log/journal directory, whereas rsyslog stores log
files permanently in the /var/log directory. The rsyslog daemon also supports the creation
of a logging server that can collect log file information from a variety of systems.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 9.

Elementary System Administration Commands

QO The ps command can identify currently running processes.

0 The top command starts a task browser that can identify processes utilizing
excessive resources on the system.

The sar and related commands provide system activity reports.
The iostat command can provide CPU and storage device statistics.

The nice and renice commands can be used to reprioritize processes.

Uo0od

The kill and killall commands can be used to stop currently running processes and
even daemons with a variety of signals.

(]

Archives can be created, extracted, and compressed with the gzip, bzip2, tar, and
star commands.

Automate System Administration: cron and at

O The cron system allows users to schedule jobs so they run at given intervals.

O The at system allows users to configure jobs to run once at a scheduled time.

472 Chapter9 RHCSA-Level System Administration Tasks

1 The crontab command is used to work with cron files. Use crontab -e to edit,
crontab -1 to list, and crontab -r to delete cron files.

O The /etc/cron.allow and /etc/cron.deny files are used to control access to the cron
job scheduler; the /etc/at.allow and /etc/at.deny files are used to control access to the
at job scheduler in a similar fashion.

Local Log File Analysis

U Red Hat Enterprise Linux includes the rsyslog daemon, which monitors a system for
kernel messages as well as other process activity, as configured in /etc/rsyslog.conf.
You can use log files generated in the /var/log directory to track activities on a system.
Other log files may be created and configured through service configuration files.

Log files may be rotated on a regular basis, as configured in the /etc/logrotate.conf file.

U000

The systemd journal logs all boot, kernel, and service messages in a ring buffer inside
the /run/log/journal directory.

(]

The journalctl command is used to display and filter journal entries.

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear in
this book. These questions exclusively test your understanding of the chapter. It is okay if you have another
way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat exams.

Elementary System Administration Commands

1. What command identifies all running processes in the current terminal console?

2. What is the highest priority number you can set for a process with the nice command?

SelfTest 473

What tar command option can be used to archive the files of an existing directory while saving its
SELinux contexts?

You want to create an archive of the /etc directory. What command do you need to run to create a
compressed bzip2 archive of that directory? Assume that archive is named /tmp/etc.tar.bz2

Automate System Administration: cron and at

5.

You want to schedule a maintenance job, maintenance.pl, to run from your home directory on
the first of every month at 4:00 A.M. You've run the crontab -e command to open your personal
crontab file. Assume you've added appropriate PATH and SHELL directives. What directive
would you add to run the specified job at the specified time?

Suppose you see the following entry in the output to the crontab -1 command:

42 4 1 * * root run-parts /etc/cron.monthly

When is the next time Linux will run the jobs in the /etc/cron.monthly directory?

If the users tim and stephanie are listed in both the /etc/cron.allow and the /etc/cron.deny files,
and users donna and elizabeth are listed only in the /etc/cron.allow file, which of those users is
allowed to run the crontab -e command?

What file is used to configure log file rotation?

Local Log File Analysis

9.

10.

What entry in the /etc/rsyslog.conf file would notify logged-in users whenever there is a critical
problem with the kernel?

There are several files in the /var/log directory related to what happened during the installation
process. What is the first word shared by the name of these log files?

474 Chapter9 RHCSA-Level System Administration Tasks

11. What command displays all systemd journal entries with a priority equal to alert or higher?

12. How you can show the systemd journal entries related to the httpd daemon logged since the 16th
of March 2015?

LAB QUESTIONS

Several of these labs involve exercises that can seriously affect a system. You should do these exercises
on test machines only. The second lab of Chapter 1 sets up KVM for this purpose.

Red Hat presents its exams electronically. For that reason, the labs for this chapter are available on
the DVD that accompanies the book, in the Chapter9/ subdirectory. They're available in .doc, .html,
and .txt formats. In case you haven't yet set up RHEL 7 on a system, refer to the first lab of Chapter 2 for
installation instructions. However, the answers for each lab follow the Self Test answers for the fill-in-
the-blank questions.

SELF TEST ANSWERS

Elementary System Administration Commands
1. This is a bit of a trick question because the ps command by itself identifies any currently running
processes in the current console.

2. The highest priority number that can be used with the nice command is -20. Remember, priority
numbers for processes are counterintuitive.

3. The tar command option that preserves SELinux contexts in an archive is --selinux.
The command that creates a compressed bzip2 archive of the /etc directory is

tar cvfj /tmp/etc.tar.bz2 /etc

Lab Answers 475

Automate System Administration: cron and at

5. The directive that runs the maintenance.pl script from a home directory at the noted time is
0 4 1 * * ~/maintenance.pl
6. Based on the noted entry in /etc/crontab, the next time Linux will run the jobs in the
/etc/cron.monthly directory is on the first of the upcoming month, at 4:42 A.m.

7. When usernames exist in both the /etc/cron.allow and /etc/cron.deny files, users listed in
/etc/cron.deny are ignored. Thus, all four users listed are allowed to run various crontab commands.

8. The configuration file associated with the rotation of log files over time is /etc/logrotate.conf.
Additional service-specific configuration files can be created in the /etc/logrotate.d directory.

Local Log File Analysis

9. There’s a commented entry in the /etc/rsyslog.conf file that meets the requirements of the
question. Just activate it and change the priority to crit to notify you (and everyone) whenever
a serious problem with the kernel logs occurs:

kern.crit /dev/console
Of course, that means there are other acceptable ways to meet the requirements of the question.
10. The log files in /var/log that are most relevant to the installation process start with anaconda.

11. The command that displays all systemd journal entries with a priority equal to alert or higher is
journalctl -p alert.

12. To show all systemd journal entries related to the httpd daemon and logged since the 16th of
March 2015, run the command journalctl _COMM=httpd --since 2015-03-16.

LAB ANSWERS

Lab 1
One way to modify the login messages as noted is with the following steps (there is at least one other

method, related to the /etc/cron.d directory):

1. Login as the root user.
2. Run the crontab -e command.

3. Add the appropriate environment variables, at least the following:

SHELL=/bin/bash

476 Chapter9 RHCSA-Level System Administration Tasks

4. Add the following commands to the file to overwrite /etc/motd at the appropriate times:

07 * * * /bin/echo 'Coffee time' > /etc/motd
0 13 * * * /bin/echo 'Want some ice cream?' > /etc/motd
0 18 * * * /bin/echo 'Shouldn\'t you be doing something else?' > /etc/motd

5. Save the file. As long as the cron daemon is active (which it is by default), the next user who logs
in to the console after one of the specified times should see the message upon a successful login.
If you want to test the result immediately, the date command can help. For example, the command

date 06120659

sets a date of June 12, at 6:59 A.M., just before the cron daemon should execute the first
command in the list. (Of course, you'll want to substitute today’s date and wait one minute
before logging in to this system from another console.)

Lab 2

To set up an at job to start 5 minutes from now, start with the at command. It'll take you to an at> prompt.

Currently installed RPMs are shown in the output to the rpm -qa command. Since there is no PATH
defined at the at> prompt, you should include the full path. So one way to create a list of currently
installed RPMs in the /root/rpms.txt file in a one-time job starting five minutes from now is with the
following commands:

at now + 5 min

at> /bin/rpm -ga > /root/rpms.txt
at> Ctrl+d

#

Within five minutes, you should see an rpms.txt file in the home directory of the root user, /root. If
five minutes is too long to wait (as it might be during the RHCSA exam), proceed to Lab 3 and come
back to this problem afterward. Don’t forget to set up the other at job to be run in 24 hours.

Lab 3
One way to set up the cron job specified in the lab requirements is detailed here:

1. Login as the root user.

2. The lab requirements don't allow you to use the crontab -e command to edit the root crontab
file. Hence, create a system crontab in the /etc/cron.d directory, using the following command:

cat > /etc/cron.d/etc-backup << EOF
3. Type the following line to set up the cron job:

5 2 * * 6 root /usr/bin/tar --selinux -czf /tmp/etc-backup-\$(/bin/date «
+\%m\%d) .tar.gz /etc > /dev/null

Lab Answers 477

4. Don't forget to escape the % characters in the crontab entry; otherwise, they will be interpreted
as newlines.

5. Type the EOF sequence:

EOF

6. To test the job, modify the crontab entry so that it runs a few minutes from now. Then, change
the directory to /tmp and extract the generated archive using the following command:

tar --selinux -xzf etc-backup-$(date +%m%d) .tar.gz
7. Confirm that SELinux contexts have been preserved by running the following command:

ls -1RZ /tmp/etc

Lab 4

There are no secret solutions in this lab; the intent is to get you to review the contents of key log files to
understand what should be there.

When you review the anaconda.” files in /var/log and compare them to other files, you may gain
some insight on how to diagnose installation problems. In future chapters, you'll examine some of the
log files associated with specific services; many are located in subdirectories such as /var/log/samba and
/var/log/httpd.

The failed login should be readily apparent in the /var/log/secure file. You may be able to get hints in
the output to the utmpdump btmp command.

When you review the /var/log/cron file, you'll see when standard cron jobs were run. Most of
the file should be filled (by default) by the standard hourly job, run-parts /etc/cron.hourly, from the
/etc/cron.d/Ohourly configuration file. If you've rebooted, you may see the anacron service, and you
should be able to search for the job of the same name.

While /var/log/dmesg includes the currently booted kernel, it may be the same kernel as the one asso-
ciated with /var/log/anaconda/syslog, if you haven’t upgraded kernels. At the end of /var/log/dmesg, you
can find the filesystems mounted to the XFS format, as well as currently mounted swap partitions. For
example, the following lists the partitions from a KVM-based virtual drive:

XFS (vdal): Mounting Filesystem

Adding 1023996k swap on /dev/mapper/rhel-swap.
Priority:-1 extents:1 across:1023996k

XFS (vdal): Ending clean mount

SELinux: initialized (dev vdal, type xfs), uses xattr

As you've hopefully discovered, the /var/log/maillog file does not include any information on mail
clients, only servers.

Red Hat has included a GUI configuration tool in RHEL 7. The automatic configuration for
hardware graphics is now sufficiently reliable, but in case you face any problems, you can look into
/var/log/Xorg.0.log.

