
Chapter 10
A Security Primer

10.01	 The Layers of Linux Security

10.02	 Firewalls and Network Address
Translation

10.03	 TCP Wrappers

10.04	 Pluggable Authentication Modules

10.05	 Secure Files and More with GPG2

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

As you start the first chapter of the RHCE section of this book, you’ll start with security.
Many administrators and enterprises move toward Linux because they believe it’s more
secure. Since most Linux software is released under open-source licenses, the source

code is available to all. Some believe that provides advantages for black hat hackers who want to
break into a system.

However, Linux developers are believers in collaboration. “Linus’s Law,” according
to the open-source luminary Eric Raymond, is that “given enough eyeballs, all bugs are
shallow.” Some of those eyes are from the U.S. National Security Agency (NSA), which has
contributed a lot of code to Linux, including the foundations of SELinux.

480  Chapter 10  A Security Primer

The NSA has also contributed a number of other concepts adapted by Red Hat that have
been integrated into a layered security strategy. These include guidelines to set up firewalls,
wrappers on packets, and security by service. They cover both user- and host-based security.
They include access controls such as ownership, permissions, and SELinux. (A number of
these layers were covered in earlier chapters.) The fundamentals of these layers of security,
as they apply to the RHCE objectives, are also covered here.

In this chapter, you’ll examine some of the tools provided by RHEL for managing
security. You’ll start with some fundamentals and continue with detailed analysis of zone-
based firewalls, Pluggable Authentication Modules (PAM), TCP Wrappers, and more.

This is not the only chapter to focus on security. Strictly speaking, it covers only two of
the RHCE objectives. However, this chapter covers the themes associated with security on
Linux systems, and those themes can help you understand the security options associated
with every service in this book.

CERTIFICATION OBJECTIVE 10.01

The Layers of Linux Security
The best computer security comes in layers. If there’s a breach in one layer, such as
penetration through a firewall, a compromised user account, or a buffer overflow that
messes up a service, there’s almost always some other security measure that prevents or
at least minimizes further damage.

INSIDE THE EXAM

Inside the Exam
This chapter is the first one in this book focused
on the RHCE requirements. As described in the
RHCE objectives, security starts with packet
filtering and NAT developed with the firewalld
zone-based firewall. The related objective is

■■ Use firewalld and associated
mechanisms, such as rich rules, zones,
and custom rules, to implement
packet filtering and configure Network
Address Translation (NAT)

But as suggested in the introduction,
security is an issue for all services covered in
the RHCE objectives. This chapter provides a
foundation for a discussion of security, includ-
ing several methods to

■■ Configure host-based and user-based
security for the service

Whereas host-based security can start with
zone-based firewalls, host- and user-based
security measures can involve TCP Wrappers
and Pluggable Authentication Modules.

INSIDE THE EXAM

The Layers of Linux Security  481

These options start with minimally configured bastion hosts, which minimize the
functionality associated with an individual Linux system. Beyond the firewall and SELinux
come security options associated with individual services. Isolation options such as chroot
jails are generally configured as part of a service. A number of these options are based on
recommendations from the NSA.

While the sections on bastion systems are intended to be a lead-in to the security
measures used for RHCE-level services, they also incorporate those security options often
associated with the RHCSA exam, which are described in earlier chapters.

Bastion Systems
Properly configured, a bastion system minimizes the risk of a security breach. It’s based on
a minimal installation, with less software than was installed on the systems configured in
Chapters 1 and 2. A bastion system is configured with two services. One service defines the
functionality of the system. It could be a web server, a file server, an authentication server, or
something similar. The other service supports remote access, such as SSH, or perhaps VNC
over SSH.

Before virtualization, the use of bastion systems was frequently limited. Only the wealthiest
enterprises could afford to dedicate different physical systems to each service. If redundancy
was required, the costs only increased further.

With virtualization, bastion systems are within reach of even smaller businesses. All that’s
needed is a standard minimal installation. With a few Kickstart files, you as an administrator
of such a network could easily create a whole group of bastion systems. Each system could
then be customized with and dedicated to a single server.

Well-constructed bastion systems follow two principles:

■■ If you don’t need the software, uninstall it.
■■ If you need the software but aren’t using it, make sure it’s not active.

In general, black hat hackers can’t take advantage of a security flaw if the associated
service isn’t installed. If you do have to install the service for test purposes, keep that service
inactive. That can help keep risks to a minimum. Of course, firewalls configured for each
bastion system should allow traffic through only for the dedicated service and the remote
access method.

Best Defenses with Security Updates
Security updates are extremely important. You can review available updates with the Software
Update tool. You can start that tool in a GUI with the gpk-update-viewer command. As
discussed in Chapter 7, you can set up automatic security updates with the Software Updates
Preferences tool, which you can start in a GUI with the gpk-prefs command.

482  Chapter 10  A Security Primer

In practice, security is often a race, between when a vulnerability is discovered and
when an update is made available. Until those updates are installed, any affected services
might be vulnerable.

As a Linux professional, it’s your job to know these vulnerabilities. If you maintain servers
such as Apache, vsFTP, and Samba, monitor the information feeds from these developers.
Security news may come in various forms, from message board updates to RSS feeds.
Normally, Red Hat also keeps up to speed on such issues. However, if you’ve subscribed to
the forums maintained by the developers of a service, it’s best to hear about problems and
planned solutions directly from the source. To some extent, that is a province of service-
specific security.

Information security vulnerabilities are tracked in a standardized format system known as
Common Vulnerabilities and Exposures (CVE), which is maintained by MITRE Corporation
(http://cve.mitre.org). In its “Errata” security advisories, Red Hat always references the
corresponding CVE identifiers. You should familiarize yourself with the CVE format and
monitor the Red Hat CVE database and Errata announcement websites for updates, available
at https://access.redhat.com/security/cve and https://rhn.redhat.com/errata, respectively.

Service-Specific Security
Most major services have some level of security that can be configured within. In many
cases, you can configure a service to limit access by host, by network, by user, and by group.
As listed in the RHCE objectives, you need to know how to configure host- and user-based
security for each listed service. SELinux options that can help secure each of these services
are also available. While details are discussed in appropriate upcoming chapters, the
following is a brief overview of service-specific security options.

HTTP/HTTPS Service-Specific Security
Although there are alternatives, the primary service for the HTTP and HTTPS protocols on
Linux is the Apache web server. In fact, Apache is the dominant web server on the Internet.
No question, Apache configuration files are complex, but they need to be, because the
security challenges on the Internet are substantial. Some options for responding to these
challenges are covered in Chapter 14.

Apache includes numerous optional software components. Don’t install more than is
absolutely necessary. If there’s a security breach in a Common Gateway Interface (CGI)
script and you haven’t installed Apache support for CGI scripts, that security issue doesn’t
affect you. However, because the RHCE specifies an objective to deploy a “basic CGI
application,” you don’t have that luxury for the exam.

Fortunately, with Apache, you can limit access in a number of ways. Limits can be created
on the server or on individual virtual hosts. Different limits can be created on regular and
secure websites. In addition, Apache supports the use of secure certificates.

The Layers of Linux Security  483

DNS Service-Specific Security
Domain Name Service (DNS) servers are a big target for black hat hackers. With that
in mind, RHEL 7 includes the bind-chroot package, which configures the necessary files,
devices, and libraries in an isolated subdirectory. That subdirectory provides a limit for
any user who breaks through DNS security known as a chroot jail. It’s designed to limit the
directories where a black hat hacker can navigate if he does break into the service. In other
words, if someone breaks into a RHEL 7 DNS server, they should not be able to “escape” the
subdirectory configured as a chroot jail.

Since RHCE exam candidates are not expected to create a master or a slave DNS server,
the challenges and risks are somewhat limited. Nevertheless, in Chapter 13, you’ll see how
to limit access to the configured DNS server by host.

NFS Service-Specific Security
With the move to the Network File System version 4, it is now possible to set up Kerberos
authentication to support user-based security. Although the configuration of Kerberos and
LDAP servers is beyond the scope of the RHCE objectives, for the RHCE exam you need
to control access to NFS shares using Kerberos. Chapter 16 will cover this topic, along with
host-based security options.

SMB Service-Specific Security
The SMB listed in the RHCE objectives stands for the Server Message Block protocol. It’s
the networking protocol originally developed by IBM, and later modified by Microsoft, as
the network protocol for its operating systems. While Microsoft now refers to it as the
Common Internet File System (CIFS), the Linux implementation of this networking
protocol is still known as Samba.

As implemented for RHEL 7, you can use Samba to authenticate via Microsoft
Active Directory. Samba supports the mapping of such users and groups into a Linux
authentication database. Samba also supports both user- and host-based security on the
global and shared directory levels, as discussed in Chapter 15.

The standard version of Samba for RHEL 7 is 4.1. With the release of version 4, Samba
can also act as a Domain Controller compatible with Microsoft Active Directory. However,
this configuration is outside of the scope of the RHCE exam.

SMTP Service-Specific Security
RHEL supports two different services for e-mail communication through the Simple Mail
Transport Protocol (SMTP): Postfix and Sendmail. Both are released under open-source
licenses.

The default SMTP e-mail service for RHEL 7 is Postfix, although you can configure
either service to meet the associated RHCE objective. In either case, the service normally

484  Chapter 10  A Security Primer

only listens on the localhost address, which is one level of security. Other levels of security
are possible based on hosts, usernames, and more. For more information, see Chapter 13.

SSH Service-Specific Security
The SSH service is installed by default even in the minimal installation of RHEL 7. That
encourages its use as a remote administration tool. However, there are risks associated with
the SSH server that can be minimized. For example, remote logins to the root account do
not have to be allowed. Security can be further regulated by user.

Host-Based Security
Host-based security refers to access limits, not only by the system hostnames, but also by
their fully qualified domain names and IP addresses. The syntax associated with host-based
security can vary. For example, while every system recognizes a specific IP address such
as 192.168.122.50, not all services recognize wildcards or Classless Inter-Domain Routing
(CIDR) notation for a range of IP addresses. Depending on the service, you may use one or
more of the following options for the noted range of network addresses:

192.168.122.0/255.255.255.0
192.168.122.0/24
192.168.122.*
192.168.122.
192.168.122

Just be careful, because some of these options may lead to syntax errors on some network
services. In a similar fashion, any of the following options may or may not work to represent
all of the systems on an example.com network:

*.example.com
.example.com
example.com

User-Based Security
User-based security includes users and groups. Generally, users and groups who are allowed
or denied access to a service are collected in a list. That list could include a user on each
line, as in a file such as /etc/cron.allow, or it could be in a list that follows a directive, such as

valid users = michael donna @book

Sometimes the syntax of a user list is unforgiving; in some cases, an extra space after a
comma or at the end of a line may result in an authentication failure.

The Layers of Linux Security  485

Groups are frequently included in a list of users, with a special symbol in front, such as
@ or +.

Sometimes, users who are allowed access to a system are configured in a separate
authentication database, such as that associated with the Samba server, configured with
the smbpasswd command.

Console Security
As discussed in Chapter 5, console security is managed by the /etc/securetty file. It can help
you regulate local console access to root and regular users.

However, console access is not just local. For a full view of console security, you need to be
able to configure limits on remote console access. Two primary options are SSH, as discussed
earlier, and Telnet. While the telnet command has its uses, as described in Chapter 2,
communications to Telnet servers are inherently insecure. Usernames, passwords, and
other communication to and from a Telnet server are transmitted in clear text. That means
a network protocol analyzer such as Wireshark could be used to read those usernames,
passwords, and any other critical information.

Even though Kerberos-based options are available for Telnet servers, most security
professionals avoid Telnet for remote consoles at almost all costs—and that’s consistent with
the recommendations from the NSA.

Recommendations from the U.S. National Security Agency
The NSA has taken a special interest in Linux, and specifically Red Hat Enterprise Linux.
Not only has the NSA taken the time to develop SELinux, but it also has created guides to
help administrators like you create a more secure RHEL configuration. (Yes, the “super-
secret” NSA has released SELinux code under open-source licenses for all to see.) They
recognize the importance of Linux in the infrastructure of computer networks. Observers
of RHEL may notice how changes between RHEL 5, RHEL 6, and RHEL 7 follow NSA
recommendations.

The NSA includes five general principles for securing operating systems in general and
RHEL in particular:

■■ Encrypt transmitted data whenever possible. NSA recommendations for encryption
include communications over what should be private and secure networks. The use
of SSH, with the security options described in Chapter 11, is an excellent step in
this process.

■■ Minimize software to minimize vulnerability. As suggested by the NSA, “The simplest
way to avoid vulnerabilities in software is to avoid installing that software.” The NSA
pays special attention to any software that can communicate over a network, including
the Linux GUI. The minimal installation of RHEL 7 includes far fewer packages than
the comparable installation of RHEL 5.

486  Chapter 10  A Security Primer

■■ Run different network services on separate systems. This is consistent with the
concept of bastion servers described earlier in this chapter. Implementation is made
easier by the flexibility afforded by virtual machine technologies such as KVM.

■■ Configure security tools to improve system robustness. The RHCSA and RHCE
objectives have this well covered, with the use of zone-based firewalls, SELinux,
and appropriate log collection services.

■■ Use the principle of least privilege. In principle, you should give users the minimum
privileges required to accomplish their tasks. Not only does that mean minimize
access to the root administrative account, but also careful use of the sudo command
privileges. SELinux options such as the user_u role for confinement (described in
Chapter 4) may also be helpful to that end.

The PolicyKit
The PolicyKit is one more security mechanism designed to help protect different
administrative tools. Most administrative tools started in the GUI from a regular account
will prompt for the root administrative password with a window similar to the one shown in
Figure 10-1.

Alternatively, you might see a slightly different window similar to that shown in Figure 10-2.
Functionally, the effect is the same. As described in the window, authentication by the
superuser is required. In this case, you’d still have to enter the root administrative password.

PolicyKit stores its policies in the /usr/share/polkit-1/actions directory. The
corresponding file for the system-config-date tool is org.fedoraproject.config.date.policy.

	 FIGURE 10-1	  

Access to
administrative
tools in the GUI
requires the root
password.

Firewalls and Network Address Translation  487

These policy files are configured in XML format and may be modified further to support
fine-grained control by individual users. Although PolicyKit provides an API that can
also be used by text-based programs, it is typically used to authorize the execution of GUI-
based tools.

One alternative that also provides fine-grained control is the /etc/sudoers file described
in Chapter 8.

CERTIFICATION OBJECTIVE 10.02

Firewalls and Network Address Translation
Typically, firewalls reside between internal LANs and outside insecure networks such as the
Internet. A firewall can be configured to examine every network packet that passes into or
out of your LAN. When configured with appropriate rules, it can filter out those packets
that may pose a security risk to the systems on the LAN.

However, to follow the spirit of the recommendations from the NSA, you’ll configure a
firewall on every system.

Although network address translation (NAT) can be implemented on every system in
the LAN, it is more commonly used on those systems configured as a gateway or router
between a LAN and an outside network.

	 FIGURE 10-2	  

Access to
administrative
tools may be
limited by the
PolicyKit.

488  Chapter 10  A Security Primer

Definitions
Firewalls based on the firewalld service read the headers of each network packet. Based on
the information contained in the headers, you can configure firewalld rules to filter each
packet. To understand how packet filtering works, you have to understand a little bit about
how information is sent across networks.

Before a message is sent over a network, that message is broken down into smaller units
called packets. Administrative information, including the type of data, the source, and the
destination addresses, as well as the source and destination ports (for TCP and UDP traffic),
is added to the header of each packet. The packets are sent over the network and reach the
destination Linux host. A firewall can examine the fields in each header. Based on existing
rules, the firewall may then take one of the following actions with that packet:

■■ Allow the packet into the system.
■■ Forward the packet to other systems if the current system is a gateway or router

between networks.
■■ Rate-limit the traffic.
■■ Reject the packet with a message sent to the originating IP address.
■■ Drop the packet without sending any sort of message.

Whatever the result, the decision can be logged to syslog or to the auditd subsystem. If a
substantial number of packets are rejected or dropped, a log file may be useful.

RHEL 7 comes with everything you need to configure a system to be a firewall, for both
IPv4 and IPv6 networks.

NAT can hide the IP address of the computers of a LAN that connect to outside
networks. NAT replaces the internal source address with the IP address of the firewall
interface connected to the outside network. The internal source address, along with other
information that identifies the connection, is stored on the firewall connection table to keep
note of which host made the request.

When the firewall receives a response, such as the content of a web page, the process is
reversed. As the packets pass through the firewall, the destination host is identified in the
connection table. The firewall modifies the IP header of each packet before sending the
packets on their way.

This approach is useful for several reasons. Hiding internal IP addresses makes it harder
for a black hat hacker to break into an internal network. NAT supports connections between
systems with private IP addresses and external networks such as the Internet. It’s the reason
why IPv4 addressing has survived for so long. In the Linux world, this process is also known
as IP masquerading.

While IP masquerading is usually referred to as “source NAT,” there is also another form
of NAT that works in the reverse direction, and is known as port forwarding or destination
NAT. Port forwarding can hide the internal port and IP address of a service. As an example,

Firewalls and Network Address Translation  489

suppose you have an internal server with IP address 192.168.122.50, running a web service
on TCP port 8080. With port forwarding, you can have clients connecting to a different IP
address and port, such as a public IP on port 80, and forward traffic to the host and port on
the internal network.

The Structure of firewalld
In Chapter 4 we introduced some of the basic concepts of firewalld. In this section, we will
explore its advanced features, such as zone configuration and rich rules.

As you already know, firewalld is based on zones. A zone defines the level of trust of
network connections. The basic elements that define a zone are illustrated in Table 10-1.

You can list all firewalld zones by typing the following command:

firewall-cmd --get-zones
block dmz drop external home internal public trusted work

These correspond to the zones you have already encountered in Table 4-8 of Chapter 4.
Take a few minutes to review the contents of that table.

To display the settings associated with a zone, use the --list-all command switch. As an
example, let’s show all the configuration settings of the public zone:

firewall-cmd --list-all --zone=public
public (default, active)
 interfaces: eth0
 sources:
 services: dhcpv6-client ssh

Zone Element Description

Interfaces Network interfaces associated with a zone
Sources Source IP addresses associated with a zone
Services Inbound services that are allowed through a zone, such as http
Ports Destination TCP or UDP ports that are allowed through a zone, such as 8080/tcp
Masquerade Specifies whether source network address translation (masquerading) is enabled
Forward ports Port forwarding rules (map traffic sent to a local port onto another port on the same

or another host)
ICMP blocks Used to block ICMP messages
Rich rules Advanced firewall rules

	 TABLE 10-1	   Elements of a firewalld Zone

490  Chapter 10  A Security Primer

 ports:
 masquerade: no
 forward-ports:
 icmp-blocks:
 rich-rules:

As you can see from the output, the public zone is associated with interface eth0.
Incoming traffic for the DHCPv6 and SSH services is allowed through the zone, whereas
masquerading is disabled. Note that on the first line of the command output, the public
zone is marked as “default” and “active.”

An active zone is a zone associated with at least one network interface or source IP
address in firewalld. We introduced the concept of a default zone in Chapter 4: Only one
zone can be marked as the “default” zone, and this special status means that any network
interfaces added to the system will be automatically assigned to that zone.

Additionally, the default zone acts like a sort of “catch-all.” This is related to how firewalld
assigns incoming packets to a zone, based on the following rules:

■■ If the source address of the packet matches the source addresses associated with a
zone, then the packet is processed according to the rules of that zone.

■■ If the packet comes from a network interface associated with a zone, then the packet
is processed according to the rules of that zone.

■■ Otherwise, the packet is processed according to the rules of the default zone.

Once an incoming packet is matched to a zone, firewalld processes it according to the rules
of that zone. As an example, based on the previous listed firewall-cmd output, incoming
packets that reach the eth0 interface will be processed using the settings of the firewalld
public zone. According to the rules of that zone, traffic will be allowed only if it belongs to
the DHCPv6 or SSH protocol.

The most common firewall-cmd options related with zone configuration are shown in
Table 10-2. Some of the listed options relate to the --zone command switch for non-default
zones.

The following example shows how to set the default zone to the “work” zone:

firewall-cmd --get-default-zone
public
firewall-cmd --get-active-zones
public
 interfaces: virbr0 virbr1 wlp4s0
firewall-cmd --set-default-zone=work
firewall-cmd --get-default-zone
work
firewall-cmd -get-active-zones
work
 interfaces: virbr0 virbr1 wlp4s0

Firewalls and Network Address Translation  491

Observe how all interfaces that were assigned to the “public” zone have been moved
to the “work” zone after the change. Also, note the --set-default-zone option makes a
permanent change that survives after a system reboot. This is one of the few options in
firewalld that does not require the --permanent switch, as you will see in a moment.

The next example associates the virbr1 interface with the “dmz” zone and adds the source
IP range 192.168.99.0/24 to the “public” zone:

firewall-cmd --change-interface=virbr1 --zone dmz
success
firewall-cmd --add-source 192.168.99.0/24 --zone=public
success
firewall-cmd --get-active-zones
dmz
 interfaces: virbr1
work
 interfaces: virbr0 wlp4s0
public
 sources: 192.168.99.0/24

Command Option Description

--get-default-zone Lists the default zone
--set-default-zone=ZONE Sets the default zone to ZONE
--get-zones List all zones
--get-active-zones List only the active zones—that is, the zones

associated with at least one source interface or
address in firewalld

--list-all-zones Lists all the settings for all zones
--list-all [--zone=ZONE] Lists all the settings for a specific ZONE or for the

default zone
--add-source=NETWORK [--zone=ZONE] Binds a source network to a ZONE or to the

default zone
--change-source=NETWORK [--zone=ZONE] Changes a source network currently assigned to a

zone to a different ZONE or to the default zone
--remove-source=NETWORK [--zone=ZONE] Removes a source network from a ZONE or from

the default zone
--add-interface=INTERFACE [--zone=ZONE] Adds an interface to a ZONE or to the default zone
--change-interface=INTERFACE [--zone=ZONE] Changes an interface currently assigned to a zone

into a different ZONE or into the default zone
--remove-interface=INTERFACE [--zone=ZONE] Removes an interface from a ZONE or from the

default zone

	 TABLE 10-2	   The firewall-cmd Zone Configuration Options

492  Chapter 10  A Security Primer

The configuration change made to the
public zone in the previous example won’t
survive a reboot. As was noted in Chapter 4, to
make permanent configuration changes, most
firewall-cmd actions require the --permanent
option. Once the new settings are saved into
the permanent configuration, run firewall-cmd
--reload to apply the settings immediately into
the run-time configuration.

Services and Ports Configuration
To configure an effective firewalld zone, you need to give it the ability to allow or block
traffic. You can do so by making appropriate changes to the services and port configuration.
Before we dig into the details, examine Table 10-3, which provides a list of the service and
port configuration options.

Two common ways to allow traffic through firewalld is by adding to a zone a pre-defined
service, or a port and protocol combination, such as 8080/tcp. By default, all but one zone
contains an implicit “deny all traffic” rule. The exception is the “trusted” zone, which allows
all traffic by default. Hence, except for the “trusted” zone, you must explicitly allow a service
or port; otherwise, the corresponding traffic will be blocked by the firewall.

When you run firewall-cmd to
make configuration changes, don’t forget the
--permanent command option; otherwise, any
changes you make won’t survive a reboot.

Command Option Description

--get-services Lists all predefined services
--list-services [--zone=ZONE] Lists all services allowed for the specified ZONE or

for the default zone
--add-service=SERVICE [--zone=ZONE] Allows traffic for the specified SERVICE through a

ZONE or the default zone
--remove-service=SERVICE [--zone=ZONE] Removes a SERVICE from a ZONE or from the

default zone
--list-ports [--zone=ZONE] Lists TCP and UDP destination ports allowed

through a ZONE or the default zone
--add-port=PORT/PROTOCOL [--zone=ZONE] Allows traffic for the specified PORT/PROTOCOL

through a ZONE or the default zone
--remove-port=PORT/PROTOCOL
[--zone=ZONE]

Removes a PORT/PROTOCOL from a ZONE or
from the default zone

	 TABLE 10-3	   The firewall-cmd Service and Port Configuration Options

Firewalls and Network Address Translation  493

Making configuration changes to firewalld on a production server may be
dangerous and result in a loss of administrative access to the host. To avoid this
problem, you can include the --timeout=SECONDS option with your firewall-cmd
command, which applies a configuration change only for the specified number
of seconds.

Take a look at the firewall services defined by default by running the following command:

firewall-cmd --get-services
amanda-client bacula bacula-client dhcp dhcpv6 dhcpv6-client dns ftp
high-availability http https imaps ipp ipp-client ipsec kerberos kpasswd
ldap ldaps libvirt libvirt-tls mdns mountd ms-wbt mysql nfs ntp openvpn
pmcd pmproxy pmwebapi pmwebapis pop3s postgresql proxy-dhcp radius rpc-bind
samba samba-client smtp ssh telnet tftp tftp-client transmission-client
vnc-server wbem-https

These services are configured in XML files in the /usr/lib/firewalld/services/ directory.
You can add services to the /etc/firewalld/services/ directory.

To see how this works, look at Figure 10-3. Note how the contents of the file http.xml
contain an XML declaration and a <service> block, with three additional elements: the
service short name, a description, and the corresponding protocol and port associated with
the service (in this case, TCP/80).

Review the services associated with the default zone. If you had set the default to
a different zone, revert your changes by running the command firewall-cmd
--set-default-zone=public. Next, list the services associated with the zone with the
following command:

firewall-cmd --list-services
dhcpv6-client ftp http ssh

If you have completed the labs in Chapters 1 and 2 on your physical workstation, you
should see the FTP and HTTP protocols in the list of services associated with the default

	 FIGURE 10-3	   The firewalld configuration for the http service

494  Chapter 10  A Security Primer

zone. If a service is missing, you can permanently add it to the zone configuration using the
following commands:

firewall-cmd --permanent --add-service=ftp
firewall-cmd --reload

You can also specify the traffic to be allowed through a zone using a port/protocol pair.
As an example, suppose you have a web server running on a nonstandard port, such as
TCP port 81. To allow connections to this port through the default firewalld zone, run the
following command:

firewall-cmd --permanent --add-port=81/tcp
firewall-cmd --reload

The next command confirms the change:

firewall-cmd --list-ports
81/tcp

To add a new service or port onto a different zone, the syntax of these commands is the
same. You just need to specify the desired zone with the --zone command switch.

When you run a service on a nonstandard port, you may need to change the default
SELinux port label configuration. This is not required for a web server running on TCP port
81, but it may be required in other situations, as you will see in Chapter 11.

Rich Rules
Adding services and ports to a zone is the most common way to allow traffic through a
firewall. However, in some situations you may need the flexibility to create more complex
rules. As an example, you may want to allow connections from all the IP addresses in a
subnet, except for one specific host. With rich rules, you can satisfy this type of requirement
and set up firewall rules that match a more complex logic. But there’s more. You can also
rate-limit incoming connections and log any connection attempts to syslog or to the audit
service.

The common firewall-cmd options associated with rich rules are listed in Table 10-4. A
rich rule does two things: it specifies the conditions a packet must meet to match the rule,
and it specifies the action to execute if the packet matches.

A rich rule uses the following basic format:

rule [family=<rule_family>]
[source address=<address> [invert=true]]
[destination address=<address> [invert=true]]
service|port|protocol|icmp-block|masquerade|forward-port
[log] [audit] [accept|reject|drop]

Firewalls and Network Address Translation  495

Now let’s analyze this command, item by item. The first item is the rule keyword,
followed by an optional family type. There are two family options for a rule:

■■ family=“ipv4”  Limits the action of the rule to IPv4 packets
■■ family=“ipv6”  Limits the action of the rule to IPv6 packets

Without the family keyword, the rule applies to both IPv4 and IPv6 packets.
The next two optional items are the source and destination addresses. You may specify

them using the following format:

■■ source address=address[/mask] [invert=true]  Matches all source IP addresses
within the address/mask range. If you add invert=true, the rich rule applies to all but
the specified address(es).

■■ destination address=address[/mask] [invert=true]  Matches all destination
IP addresses within the address/mask range. If you add invert=true, the rich rule
applies to all but the specified address(es).

Packet patterns can be more complex. In TCP/IP, most packets are sent using the
Transport Control Protocol (TCP), the User Datagram Protocol (UDP), or the Internet
Control Message Protocol (ICMP) protocols. The associated packet patterns are listed here:

■■ service name=service_name  All packets are checked for a specific service.
■■ port=port_number protocol=tcp|udp  All packets are checked for a specific port

number and protocol.
■■ icmp-block name=icmptype_name  All packets are checked for a specific ICMP

type. To display a list of supported ICMP types, run the command firewall-cmd
--get-icmptypes.

Command Option Description

--list-rich-rules [--zone=ZONE] Lists all rich rules for the specified ZONE or for the
default zone

--add-rich-rule=‘RULE’ [--zone=ZONE] Adds a rich rule for the specified ZONE or for the
default zone

--remove-rich-rule=‘RULE’ [--zone=ZONE] Removes a rich rule for the specified ZONE or for the
default zone

--query-rich-rule=‘RULE’ [--zone=ZONE] Checks whether a rich rule has been added for the
specified ZONE or for the default zone

	 TABLE 10-4	   The firewall-cmd Rich Rule Configuration Options

496  Chapter 10  A Security Primer

The masquerade and forward-port options will be covered in the next sections of
the chapter.

Once a rich rule finds a packet pattern match, it needs to know what to do with that
packet. The last part of the rich rule options determines what happens to matched packets.
There are five basic options:

■■ drop  The packet is dropped. No message is sent to the source host.
■■ reject  The packet is dropped. An ICMP error message is sent to the source host.
■■ accept  The packet is allowed through the firewall.
■■ log  The packet is logged to syslog.
■■ audit  The packet is logged to the audit system.

The limit value=rate/duration directive is used to limit the amount of connections and
packets logged in a time interval. For example, limit value=5/m specifies that a maximum
of five log messages per minute will be logged or accepted, limit value=10/h sets the limit
to 10 per hour, and so on. For a syntax reference of the firewalld rich language, refer to the
firewalld.richlanguage man page.

EXERCISE 10-1

Configure Rich Rules
In this exercise, you will create a rich rule to allow all web traffic from all hosts in the
network, except the tester1.example.com host. The rule you create will deny access to that
host with an ICMP error message. In addition, the host oustider1.example.org should be
allowed to connect to the web server, with all its connection attempts logged to syslog, at a
rate limited to two messages per minute. Use the default (public zone) for all traffic. Assign
the 192.168.100.0/24 network segment to the dmz zone.

This exercise assumes that you have installed the virtual machines and configured a
default Apache server on your physical workstation, as explained in the labs of Chapters 1
and 2.

1.	 On your physical host, make sure that Apache is running and that you can access the
Apache home page by navigating to the following URL: http://127.0.0.1.

systemctl status httpd
elinks --dump http://127.0.0.1

2.	 Check that the default zone is set to the public zone.

firewall-cmd --get-default-zone
firewall-cmd --set-default-zone=public

Firewalls and Network Address Translation  497

3.	 List the settings associated with the default zone. You should see the two virbr0 and
virbr1 virtual bridges in the list of interfaces.

firewall-cmd --list-all

4.	 Confirm that virbr1 is associated with the 192.168.100.0/24 network and move this
interface to the dmz zone.

ip addr show virbr1
firewall-cmd --permanent --change-interface=virbr1 --zone=dmz

5.	 If the HTTP service is not allowed through the default zone, add it to the firewalld
configuration.

firewall-cmd --permanent --add-service=http

6.	 Create a rich rule to reject web connections from server1.example.com
(192.168.122.50):

firewall-cmd --permanent--add-rich-rule='rule family=ipv4 source 
address=192.168.122.50 service name=http reject'

7.	 Create a rich rule to log all connection attempts from outsider1.example.org
(192.168.100.100) and rate-limit the logs to two messages per minute.

firewall-cmd --permanent --zone=dmz --add-rich-rule='rule 
family=ipv4 source address=192.168.100.100 service name=http log limit 
value=2/m'

8.	 Reload the firewall configuration to apply the permanent changes to the run-time
configuration.

firewall-cmd --reload

9.	 Test from server1 and point the ELinks browser to 192.168.122.1. Is the host allowed
to connect?

elinks --dump http://192.168.122.1

10.	 Test from outsider1 and point the ELinks browser to 192.168.100.1. Is the host
allowed to connect? Do you see any connection attempts logged to /var/log/messages?

elinks --dump http://192.168.100.1

11.	 Revert the firewalld configuration to the initial settings.

498  Chapter 10  A Security Primer

Further Recommendations from the NSA
Simple firewalls are frequently the most secure. On an exam, it’s best to keep
everything, firewalls included, as simple as possible. But the NSA would go further. It
has recommendations for the default rules, for limitations on the ping command, and for

blocking suspicious groups of IP addresses. To
those recommendations, we add a couple more
suggestions to reduce risks to a system. Although
these recommendations go beyond what’s
suggested by the RHCE objectives, read this
section. If you’re less than comfortable with
the firewall-cmd command, this section can
help. While you could implement these changes
with the Rich Rules option in the Firewall
Configuration tool, that is less efficient than
with firewall-cmd.

You can test any of these suggestions on a system like the server1.example.com VM
created in Chapter 2.

Regulate the ping Command
One earlier attack on various Internet systems involved the ping command. From Linux,
it’s possible to flood another system with the -f switch. If the attacker uses multiple systems,
it may transmit thousands or millions of packets per second. It’s important to be able to
defend a system from such attacks or to limit their impact because they can prevent others
from accessing your websites and more.

The -f switch to the ping command was described solely to point out one of the
major risks on a network. On most Linux distributions, only root is allowed to
specify the -f switch. In many cases, it is illegal to run such a command on or
against someone else’s system. For example, one article suggests that such an
attack could be a violation of the Police and Justice Act in the United Kingdom
with a penalty of up to 10 years in prison. Similar laws exist in other countries.

One potentially troublesome rule in the default firewall is that all ICMP traffic is allowed
by default. ICMP messages go both ways. If you run the ping command on a remote system,
the remote system responds with an ICMP Echo Reply packet. So if you want to limit ICMP
messages, use the following rules to filter ICMP Echo Requests:

firewall-cmd --add-icmp-block=echo-request

The suggested changes
to firewalld are just recommendations.
However, because the requirement to
“implement packet filtering” is generic, it’s
useful to examine a variety of examples.

Firewalls and Network Address Translation  499

Add this rule to the server1.example.com VM, and measure the amount of packets sent
and received from your physical host to server1 with the ping -f command. Then, do the
same after removing the ICMP block and compare your results.

Block Suspicious IP Addresses
Black hat hackers who want to break into a system may hide their source IP address. As
nobody is supposed to use a private or experimental IPv4 address on the public Internet,
such addresses are one way to hide. The following additions to firewalld would drop packets
sourced from the specified IPv4 network address blocks:

firewall-cmd --add-rich-rule='rule family=ipv4 source
address=10.0.0.0/8 drop'
firewall-cmd --add-rich-rule='rule family=ipv4 source
address=172.16.0.0/12 drop'
firewall-cmd --add-rich-rule='rule family=ipv4 source
address=192.168.0.0/16 drop'
firewall-cmd --add-rich-rule='rule family=ipv4 source
address=169.254.0.0/16 drop'

Regulate Access to SSH
Since SSH is important for the administration of remote systems, additional measures to
protect this service are appropriate. It’s certainly possible to set up a nonstandard port for
SSH communication. Such a measure can be a part of a layered security strategy. However,
tools such as nmap can detect the use of SSH on such nonstandard ports. So it’s generally
better to set up the configuration of the SSH server as discussed in Chapter 11 along with
firewall rules such as the following. The following rich rule allows all SSH traffic, but limits
incoming connections to three per minute:

firewall-cmd --add-rich-rule='rule service name=ssh accept
limit value=3/m'

Make Sure That firewalld Is Running
Once desired changes are saved with the --permanent option, make sure that firewalld is
in operation with the new rules. Don’t forget to reload the configuration with the following
command:

firewall-cmd --reload

To avoid starting the old iptables firewall (which was the default in RHEL 6), it is a good
idea to mask the corresponding service units, as shown here:

systemctl mask iptables
systemctl mask ip6tables

500  Chapter 10  A Security Primer

These commands link the iptables and ip6tables service units to /dev/null, preventing a
system administrator from accidentally starting those services.

IP Masquerading
Red Hat Enterprise Linux supports a variation of
NAT called IP masquerading. IP masquerading
is often used to allow Internet access from
multiple internal hosts, while sharing only a
single public IP address. IP masquerading maps

multiple internal IP addresses to that single valid external IP address. That helps, because all
public IPv4 address blocks have now been allocated. IPv4 addresses are often still available
from third parties, but at a cost. That cost is one more reason for IP masquerading. On
the other hand, you may think that systems on IPv6 networks do not need masquerading,
as it’s relatively easy for many requesting users to get their own subnet of public IPv6

addresses. Nevertheless, even on IPv6 networks,
masquerading can help keep that system secure.

IP masquerading is a fairly straightforward
process. It’s implemented on a gateway or router,
which, by definition, has two or more network
interfaces. One network interface is typically
connected to an outside network such as the
Internet, and the second network interface
is connected to a LAN. In a small office, the

interface connected to the outside network may connect through an external device such as
a cable “modem” or Digital Subscriber Line (DSL) adapter. The following assumptions are
made for the configuration:

■■ The public IP address is assigned to the network interface that is directly connected
to the outside network.

■■ Network interfaces on the LAN get IP addresses associated with a single private network.
■■ One network interface on the gateway or router system gets an IP address on that

same private network.
■■ IP forwarding is enabled on the router or gateway system, as discussed later in this

chapter.
■■ Each system on the LAN is configured with the private IP address of the router or

gateway system as the default gateway address.

When a computer on a LAN wants a web page on the Internet, packets are routed to the
firewall. The firewall replaces the source IP address on each packet with the firewall’s public
IP address. It then assigns a new port number to the packet. The firewall caches the original
source IP address and port number.

It’s critical to understand
how to secure a Red Hat Enterprise Linux
system against unauthorized access.

The RHCE objectives
specify the use of firewalld to configure
network address translation.

Firewalls and Network Address Translation  501

When a packet comes back from the Internet to the firewall, it should include a port
number. If the firewall can match an associated rule with the port number assigned to a
previous outgoing packet, the process is reversed. The firewall replaces the destination IP
address and port number with the internal computer’s private IP address and then forwards
the packet back to the original client on the LAN.

In practice, the following command enables masquerading. The noted command
assumes that the zone that is directly connected to the Internet is the “dmz”:

firewall-cmd --permanent --zone=dmz --add-masquerade

You can also use a rich rule to enable masquerading. This offers the option to control
which source IP addresses should be masqueraded:

firewall-cmd --permanent --zone=dmz --add-rich-rule='rule family-ipv4
source address=192.168.0.0/24 masquerade'

In most cases, the private IP network address is not required because most LANs protected
by a masquerade are configured on a single private IP network.

On the “external” zone, masquerading is enabled by default. Assigning the
Internet-facing network interface to this zone would automatically masquerade
all internal clients that establish a connection to the Internet.

IP Forwarding
IP forwarding is more commonly referred to as routing. Routing is critical to the operation of the
Internet or any IP network. Routers connect and facilitate communication between multiple
networks. When you set up a computer to find a site on an outside network, it needs a
gateway address. This corresponds to the IP address of a router on the LAN.

A router looks at the destination IP address of each packet. If the IP address is on one of
the router’s LANs, it routes the packet directly to the proper computer. Otherwise, it sends
the packet to another router closer to its final destination. To use a Red Hat Enterprise Linux
system as a router, you should enable IP forwarding in the /etc/sysctl.conf configuration file
by adding this line:

net.ipv4.ip_forward = 1

These settings take effect on the next reboot. Until then, the new settings in sysctl.conf
can be enabled with the following command:

sysctl -p

On a physical host running the KVM hypervisor, IP forwarding is usually enabled by
default, as you can verify with the following command:

sysctl net.ipv4.ip_forward

502  Chapter 10  A Security Primer

The Red Hat Firewall Configuration Tool
Chapter 4 introduced the RHCSA elements of the Red Hat Firewall Configuration tool.
In this section, we will explain how you can implement the RHCE objectives related to
firewalld using the Firewall Configuration tool.

Start the Firewall Configuration tool with the firewall-config command or by clicking
Applications | Sundry | Firewall. The Firewall Configuration tool has a number of capabilities,
as shown in Figure 10-4. In general, if you have selected the run-time configuration mode, it
implements changes immediately, but those won’t persist a system reboot. In most cases, you
will want to select Permanent mode, which writes changes that survive system reboot.

After you make a change, you can apply the saved configuration immediately by clicking
Options | Reload Firewalld.

Default Zone and Interfaces
In the Firewall Configuration tool, the left pane lists zones; the default zone is marked in
bold. You can do everything in the Firewall Configuration tool that you can do with the

	 FIGURE 10-4	   The Firewall Configuration tool

Firewalls and Network Address Translation  503

firewall-cmd command. You can assign interfaces to zones, select which services and ports
are allowed through a zone, enable masquerading, and so on.

To bind interfaces to a zone, click the Interface tab to reveal the window shown in
Figure 10-5. Routers have two or more network interfaces. Administrators who trust the
systems on the internal network may click Add to assign internal interfaces to the “trusted”
zone. However, this can be a risky practice. Threats can come from within as well as from
outside a network.

In most cases, the gateway or router system has two or more Ethernet devices. Assume you
are configuring a system with three devices: eth0, eth1, and eth2, where eth0 is connected to
an external network, eth1 to a DMZ, and eth2 to the internal network. If you trust all systems
on a local network, you might assign device eth2 as part of the trusted zone.

Sometimes a device may be listed using a different naming convention. As an example, a
wireless adapter can be named wlan0 or even ath0. In other cases, it may be named wlp4s0,
where p4 and s0 indicate the PCI bus and slot number, respectively. So it’s important to
know the device files associated with each network device on a system.

	 FIGURE 10-5	   Zone interfaces

504  Chapter 10  A Security Primer

In the Firewall Configuration tool, you can bind source IP addresses to a zone. To do so,
select the Source tab and click the Add button. This opens the Address window shown in
Figure 10-6. Then, enter the source IP address range, such as 192.168.200.0/16.

Similarly, you can enable services and ports from the corresponding tabs. Once the
configuration is applied, traffic matching the selected services and ports will be trusted
through the interfaces and source IP addresses bound to the zone.

Masquerading
In the Firewall Configuration tool, select a zone and then click the Masquerading tab to
reveal the window shown in Figure 10-7. In most cases, you should set up masquerading for
the traffic that is going out to the Internet. That has three advantages:

■■ It hides the IP address identity of the internal systems from external networks.
■■ It requires only one public IP address.
■■ It sets up IP forwarding across the configured network devices.

Administrators can choose to set up masquerading on the zone of their choice. The
selected zone should be the one connected to an external network such as the Internet.

Port Forwarding
In the Firewall Configuration tool, select a zone and then select the Port Forwarding tab.
Typically, forwarding in this fashion works only in combination with masquerading. With
such rules, port forwarding can be used to set up communications by mapping one port and
protocol to a port on the local or a remote system, as defined by its IP address. One example
is shown in Figure 10-8.

The options shown in the figure would redirect traffic destined for TCP port 80 on the
public zone to a remote destination, with an IP address of 192.168.122.150. The port on
that remote system is 8008. Port forwarding is also known as “destination NAT” because it
is used to translate the destination IP address and service port of a packet. Port forwarding
is typically used to make an internal service visible to other machines on the Internet, while
hiding all the other services running on the internal host.

	 FIGURE 10-6	  

A source IP address
range assigned to
a zone

Firewalls and Network Address Translation  505

	 FIGURE 10-7	   Masquerading with the Firewall Configuration tool

	 FIGURE 10-8	  

Port forwarding
with the Firewall
Configuration tool

506  Chapter 10  A Security Primer

	 FIGURE 10-9	   ICMP Filter with the Firewall Configuration tool

ICMP Filter
In the Firewall Configuration tool, select a zone and click the ICMP Filter tab to open the
screen shown in Figure 10-9. As suggested in the description, the options relate to different
messages associated with the ICMP protocol, including but not limited to, the ping-
related packets. The options shown are further described in Table 10-5. If you activate a
filter in that table, the filter blocks that category of packets.

Rich Rules
Select a zone, click the Rich Rules tab, and then click Add to open the Rich Rule window
shown in Figure 10-10.

For the purpose of this section, we have created a new rule, as shown in Figure 10-10, to
block all SSH connections from the host 192.168.100.50. Connection attempts are rejected
with a ICMP Host Prohibited message and are logged to /var/log/messages with an “SSH”
prefix. Log messages are limited to a maximum of five per minute.

Firewalls and Network Address Translation  507

Filter Description

Destination Unreachable A message generated by a router to inform that a destination address is
unreachable

Echo Reply Regular response messages to Echo Requests
Echo Request A message that can be generated with the ping command
Parameter Problem Error messages not otherwise defined by other ICMP messages
Redirect A message to notify the source host to send packets via an alternative route
Router Advertisement Periodic message multicasted to other routers to announce the IP

addresses assigned to an interface
Router Solicitation A request for a router advertisement
Source Quench Response to a host to slow down packet transfers
Time Exceeded Error message if a “Time To Live” field in a packet is exceeded

	 TABLE 10-5	   ICMP Filter Options

	 FIGURE 10-10	  

Take advantage of
rich rules.

508  Chapter 10  A Security Primer

CERTIFICATION OBJECTIVE 10.03

TCP Wrappers
As suggested by its name, TCP Wrappers protects those services that communicate using
the TCP protocol. It was originally designed to help protect services configured through the
Extended Internet Super-Server daemon (xinted). However, TCP Wrappers’ protection is
no longer limited to such services; the protection can apply to all services statically and
dynamically linked to the associated library wrapper file, libwrap.so.0.

The way TCP Wrappers protects a service is defined in the /etc/hosts.allow and
/etc/hosts.deny configuration files.

Is a Service Protected by TCP Wrappers?
The strings command can be used to identify those daemons protected by TCP Wrappers.
It does so by listing the printable character sequences included in a binary. The string
associated with TCP Wrappers is hosts_access. Daemons can be found in the /usr/sbin
directory. Thus, the quickest way to scan the daemons in these directories for the hosts_
access string is with the following command:

strings -f /usr/sbin/* | grep hosts_access

The output depends on installed packages. One example is the SSH daemon, /usr/sbin/sshd.
You can also use the shared library dependencies command, ldd, to confirm a link to the

TCP Wrappers library, libwrap.0.so. To identify those dependencies for the sshd daemon,
run the following command:

ldd /usr/sbin/sshd

However, that’s not convenient because it returns the files for more than a couple of dozen
library files. As an expert at the Linux command line, you should know how to pipe that
output to the grep command to see if it’s associated with the TCP Wrappers library file,
libwrap.so.0:

ldd /usr/sbin/sshd | grep libwrap.so.0

And from the output, it’s confirmed:

libwrap.so.0 => /lib64/libwrap.so.0 (0x00007f13b94380000)

TCP Wrappers  509

The TCP Wrappers configuration files can help you protect the SSH service. That
protection comes over and above any settings included in the standard zone-based firewalld,
the SSH server configuration file, SELinux, and so on. However, such redundant protection
is important in a layered security strategy.

TCP Wrappers Configuration Files
When a system receives a network request for a service linked to the libwrap.so.0 library,
it passes the request on to TCP Wrappers. This system logs the request and then checks its
access rules. If there are no limits on the particular host or IP address, TCP Wrappers passes
control back to the service.

The key files are hosts.allow and hosts.deny in the /etc directory. The philosophy is fairly
straightforward: users and clients listed in hosts.allow are allowed access; users and clients
listed in hosts.deny are denied access. As users and/or clients may be listed in both files, the
TCP Wrappers system takes the following steps:

1.	 It searches /etc/hosts.allow. If TCP Wrappers finds a match, it grants access. No
additional searches are required.

2.	 It searches /etc/hosts.deny. If TCP Wrappers finds a match, it denies access.
3.	 If the host isn’t found in either file, access is automatically granted to the client.

You use the same access control language in both /etc/hosts.allow and /etc/hosts.deny
files. The basic format for commands in each file is as follows:

daemon_list : client_list

The simplest version of this format is

ALL : ALL

This specifies all services and makes the rule applicable to all hosts on all IP addresses. If you
set this line in /etc/hosts.deny, access is prohibited to all services. Of course, since that is
read after /etc/hosts.allow, services in that file are allowed.

You can create finer-grained filters than just prohibiting access to all daemons from
all systems. For example, the following line in /etc/hosts.allow allows the client with an
IP address of 192.168.122.50 to connect to the local system through the Secure Shell:

sshd : 192.168.122.50

The same line in /etc/hosts.deny would prevent the computer with that IP address from
using SSH to connect. If the same line exists in both files, /etc/hosts.allow takes precedence,
and users from the noted IP address will be able to connect through SSH, assuming other

510  Chapter 10  A Security Primer

security settings such as zone-based firewalls allow it. You can specify clients a number of
different ways, as shown in Table 10-6.

As you can see in Table 10-6, there are two different types of wildcards. ALL can be used
to represent any client or service, and the dot (.) specifies all hosts with the specified domain
name or IP network address.

You can set up multiple services and addresses with commas. Exceptions are easy to make
with the EXCEPT operator. Review the following excerpt from the /etc/hosts.allow file:

ALL : .example.com
sshd : 192.168.122.0/24 EXCEPT 192.168.122.150
vsftpd : 192.168.100.100

The first line in this file opens ALL services to all computers in the example.com domain.
The following line opens the SSH service to any computer on the 192.168.122.0/24 network,
except the one with an IP address of 192.168.122.150. Then the vsFTP service is opened
to the computer with an IP address of 192.168.100.100. You may want to add the localhost
IP address network to the noted daemons in the /etc/hosts.allow file, as follows:

sshd : 127. 192.168.122.0/24 EXCEPT 192.168.122.150
vsftpd : 127. 192.168.100.100

Otherwise, attempts to connect from the local system may be denied based on other
directives in the /etc/hosts.deny file.

The configuration that follows contains a hosts.deny file to see how lists can be built to
control access:

ALL EXCEPT vsftpd : .example.org
sshd : ALL EXCEPT 192.168.122.150
ALL : ALL

Client Description

.example.com Domain name. Since this domain name begins with a dot, it specifies all
clients on the example.com domain.

172.16. IP address. Since this address ends with a dot, it specifies all clients with an
IP address of 172.16.x.y.

172.16.72.0/255.255.254.0 IP network address with subnet mask.
172.16.72.0/23 IP network address with subnet mask, but using CIDR notation.
ALL Any client, any daemon.

	 TABLE 10-6	   Sample Client Lists in /etc/hosts.allow and /etc/hosts.deny

TCP Wrappers  511

The first line in the hosts.deny file denies all services except vsFTP to computers
in the example.org domain. The second line states that the only computer allowed to
access the local SSH server has an IP address of 192.168.122.100. Finally, the last line is
a blanket denial; all other computers are denied access to all services controlled by TCP
Wrappers.

EXERCISE 10-2

Configure TCP Wrappers
In this exercise, you will use TCP Wrappers to control access to network resources. Since
such controls are enabled by default, you shouldn’t have to make any modifications to
installed services.

1.	 Try to connect to the local vsFTP server using the address localhost. You may need
to do several things first:
A.	 Install the Very Secure FTP daemon from the vsftpd RPM.
B.	 Install the lftp client from the lftp RPM.
C.	 Activate the vsFTP service with the systemctl start vsftpd command.
D.	 Configure the service to start at boot with the systemctl enable vsftpd

command.
E.	 Allow the FTP protocol through firewalld.

2.	 Edit /etc/hosts.deny and add the following line (don’t forget to write the file):

ALL : ALL

3.	 What happens when you try to run lftp 127.0.0.1? And what if you run a command
such as ls after logging into the FTP server?

4.	 Edit /etc/hosts.allow and add the following line:

vsftpd : 127.0.0.1

5.	 Now what happens when you try to run lftp 127.0.0.1? Does the ls command return
any output from the FTP server?

6.	 Undo any changes made when you are finished.

512  Chapter 10  A Security Primer

CERTIFICATION OBJECTIVE 10.04

Pluggable Authentication Modules
RHEL uses the Pluggable Authentication Modules (PAM) system as another layer of
security primarily for administrative tools and related commands. PAM includes a group
of dynamically loadable library modules that govern how individual applications verify their
users. You can modify PAM configuration files to customize security requirements for
different administrative utilities. Most PAM configuration files are stored in the /etc/pam.d
directory.

PAM modules also standardize the user authentication process. For example, the login
program uses PAM to require usernames and passwords at login. Open the /etc/pam.d/login
file. Take a look at the first line:

auth [user_unknown=ignore success=ok ignore=ignore default=bad] 
pam_securetty.so

To interpret, this line means that the root user can log in only from secure terminals as
defined in the /etc/securetty file, and unknown users are ignored.

The configuration files shown in the /etc/pam.d directory often have the same name as
the command that starts the administrative utility. These utilities are “PAM aware.” In other
words, you can change the way users are verified for applications such as the console login
program. Just modify the appropriate configuration file in the /etc/pam.d directory.

Configuration Files
Take a look at the configuration files in a typical /etc/pam.d directory, as shown in Figure 10-11.
Depending on what’s installed, you may see a somewhat different list of files.

As suggested earlier, most of the filenames in the /etc/pam.d directory are descriptive.
Take a look at some of these files. In most cases, they refer to PAM modules. These modules
can be found in the /usr/lib64/security directory. Excellent descriptions of each module
can be found in the /usr/share/doc/pam-versionnumber directory, in the txts/ and html/
subdirectories. For example, the functionality of the pam_securetty.so module is described
in the README.pam_securetty file.

You can also refer to the HTML version of the Linux-PAM System Administrators’ Guide
available in the /usr/share/doc/pam-versionnumber/html directory, starting with the Linux-
PAM_SAG.html file.

Pluggable Authentication Modules  513

Control Flags
The PAM system provides four different types of services. These are associated with four
different types of PAM rules:

■■ Authentication management (auth)  Validates the identity of a user. For example,
a PAM auth rule verifies whether a user has provided valid username and password
credentials.

■■ Account management (account)  Allows or denies access according to the account
policies. For example, a PAM account rule may deny access according to time,
password expiration, or a specific list of restricted users.

■■ Password management (password)  Manages password change policies. For
example, a PAM password rule may enforce a minimum password length when a
user tries to change her password.

■■ Session management (session)  Applies settings for an application session. For
example, a PAM session rule may set default settings for a login console.

The configuration shown in Figure 10-12 is from a sample PAM configuration file,
/etc/pam.d/login. Every line in all PAM configuration files is written in the following format:

type control_flag module_name [arguments]

The type, as described previously, can be auth, account, password, or session.
The control_flag determines what PAM does if the module succeeds or fails.

	 FIGURE 10-11	  

PAM configuration
files in the
/etc/pam.d
directory

514  Chapter 10  A Security Primer

The module_name specifies the name of the actual PAM module file. Finally, you can
specify options for each module.

The control_flag field requires additional explanation. It determines how PAM reacts
when a module returns success or failure. The five most common control flags are described
in Table 10-7.

	 FIGURE 10-12	   The PAM /etc/pam.d/login configuration file

control_flag Description

required If this module returns success, PAM proceeds to the next rule of this type. If it fails,
PAM proceeds to the next rule in the configuration file—but the final result is failure.

requisite If this module fails, PAM does not check any additional rules and returns a failure.
sufficient If this module passes, no other rules of this type need to be processed, and the result is

success. Otherwise, if the check fails, PAM continues processing the remaining rules.
optional PAM ignores the success or failure of this rule.
include Includes all directives of the same type from the noted configuration file; for

example, if the directive is password include system-auth, this includes all
password directives from the PAM system-auth file.

	 TABLE 10-7	   PAM Control Flags

Pluggable Authentication Modules  515

To see how control flags work, take a look at the rules from the /etc/pam.d/runuser
configuration file:

auth sufficient pam_rootok.so

The first auth command checks the pam_rootok.so module. In other words, if the
root user tries to run the runuser command, the rule will return a pass and the runuser
command will be executed. As the control_flag is sufficient, if there were other auth
commands in this file, they would be ignored.

session optional pam_keyinit.so ignore

The purpose of the second line is to clear the session key ring of the runuser process
when this exits. In this case, the control_flag is optional, meaning that the outcome of this
rule does not have any effect on the other session rules.

session required pam_limits.so

The third line sets the resource limits defined in /etc/security/limits.conf when invoking
an instance of the runuser application. The control_flag is required, which will cause the
command session to fail if the limits cannot be set.

session required pam_unix.so

The module associated with the last session type (pam_unix.so) logs the username and
service type at the beginning and end of each command session.

The Format of a PAM File
This section is a little complex. It starts with the /etc/pam.d/login configuration file shown
in Figure 10-12. In addition, as the file includes references to the /etc/pam.d/system-auth
configuration file, shown in Figure 10-13, you’ll need to go back and forth between files to
follow along with this section.

You don’t have to memorize the content in this section. Instead, you should use it to
become more familiar with PAM configuration files. While you read this section, familiarize
yourself with each PAM module by reading the corresponding man page. The rpm -qd pam
command gives a full list of the installed PAM man pages in your system.

When a user opens a text console and logs in, Linux goes through the /etc/pam.d/login
configuration file line by line. As previously noted, the first line in /etc/pam.d/login limits
root user access to secure terminals as defined in the /etc/securetty file:

auth [user_unknown=ignore success=ok ignore=ignore default=bad] 
pam_securetty.so

516  Chapter 10  A Security Primer

The next line includes the auth commands from the system-auth PAM configuration file:

auth substack system-auth

For the purpose of this example, you can assume that the substack control flag is
equivalent to an include directive. The system-auth configuration file shown in Figure 10-13
includes four auth directives. On your system, you may see additional lines—for example, if
you configured the machine as an LDAP or Kerberos client. In that case, your configuration
will reference additional PAM modules, such as pam_ldap or pam_krb5.

auth required pam_env.so
auth sufficient pam_unix.so nullok try_first_pass
auth requisite pam_succeed_if.so uid >= 1000 quiet_success
auth required pam_deny.so

In order, the preceding lines set up environment variables and check password
authentication against the local /etc/passwd and /etc/shadow databases (pam_unix.so). The
sufficient flag associated with the second module means that authentication succeeds if a
valid password has been entered, and no further rules from the auth section are processed.

	 FIGURE 10-13	   The PAM /etc/pam.d/system-auth configuration file

Pluggable Authentication Modules  517

If the pam_unix.so module returns a fail, PAM
will process the next rule, which disables logging
if the user ID of the account is 1000 and above.
Then, if PAM gets to the last rule, the user is
denied access (pam_deny.so).

Now return to the /etc/pam.d/login file. The
next line includes the directive in the postlogin
file, which does not contain any auth rules.
Moving to the subsequent line, this invokes the
account type of the pam_login.so module. This
module disables user logins if the file /etc/nologin
exists:

account required pam_nologin.so

The following rule includes the account rules from the /etc/pam.d/system-auth
configuration file:

account include system-auth

These are the account type rules lines from the default /etc/pam.d/system-auth:

account required pam_unix.so
account sufficient pam_localuser.so
account sufficient pam_succeed_if.so uid < 1000 quiet
account required pam_permit.so

The first line refers to the pam_unix.so module in the /usr/lib64/security directory, which
checks in /etc/shadow whether the account is valid and has not expired. Based on the
pam_localuser.so module and on the sufficient control type, if the username is listed in
/etc/passwd, no further directives are processed. The pam_succeed_if.so module disables
logging for service users (with user IDs less than 1000). Then, the pam_permit.so module
always returns success.

Now return to the /etc/pam.d/login file. The next line is a password directive, which
includes other password rules from the /etc/pam.d/system-auth file:

password include system-auth

These are the password type rules from the default /etc/pam.d/system-auth:

password requisite pam_pwquality.so try_first_pass 
local_users_only retry=3 authok_type=
password sufficient pam_unix.so sha512 shadow nullok try_first_pass 
use_authok
password required pam_deny.so

If the /etc/nologin file
exists, regular users are not allowed to
log in to the local console. Any regular
user who tries to log in gets to read the
contents of /etc/nologin as a message.
This behavior is controlled by the
pam_nologin.so module.

518  Chapter 10  A Security Primer

The first rule from this output performs a password strength check. It allows the use of
the password collected by the application that called PAM (try_first_pass) and applies its
checks to local users only, with a maximum of three password change attempts.

The next rule updates the user’s password using the SHA512 encryption hash, supports
the Shadow Password Suite described in Chapter 8, allows the use of an existing null (zero-
length) password, and forces the module to set the new password to the value provided by
the previous module (use_authok).

The password required pam_deny.so directive is trivial; as noted in README.pam_
deny in the /usr/share/doc/pam-versionlevel/txt directory, this module always fails.

Finally, there are six session rules in the default /etc/pam.d/login file. Let’s take them
three at a time:

session required pam_selinux.so open
session required pam_namespace.so
session optional pam_keyinit.so force revoke

The first line (pam_selinux.so open) sets up a few SELinux security contexts. The
second line (pam_namespace.so) creates separate namespaces for users at logon. The third
line initializes the key ring of the login session (pam_keyring.so).

session include system-auth
session include postlogin
-session optional pam_ck_connector.so

Jumping ahead, the last of this group of rules registers a login session with the ConsoleKit
daemon. Note the minus character in front of the line: this tells PAM not to send any error
message to syslog if the module is missing. The preceding rules include the following
session type lines from the system-auth and postlogin files:

session optional pam_keyinit.so revoke
session required pam_limits.so
-session optional pam_systemd.so
session [success=1 default=ignore] pam_succeed_if.so service in 
crond quiet use_uid
session required pam_unix.so

The first of these rules is identical to the line in the main /etc/pam.d/login file that revokes
the session key ring of the invoking process. The next rule sets limits (pam_limits.so) on
individual user resources through /etc/security/limits.conf. The next rule registers the user
session with the systemd login manager. The fourth rule will skip the next rule (success=1)
for cron jobs. The final rule logs the result when the user logs in.

Finally, the next three rules included from the postlogin file invoke the pam_lastlogin.so
module with different options, depending on whether the requesting service is the graphical
login, the su command, or another process. The pam_lastlogin.so module shows the

Pluggable Authentication Modules  519

amount of previous failed login attempts to the user, and is also commonly used to record
the date of the last login in /var/log/lastlog.

session [success=1 default=ignore] pam_succeed_if.so 
service !~ gdm* service !~ su* quiet
session [default=1] pam_lastlog.so nowtmp showfailed
session optional pam_lastlog.so silent noupdate showfailed

EXERCISE 10-3

Configure PAM to Limit root Access
In this exercise, you can experiment with some of the PAM security features of Red Hat
Enterprise Linux 7.

1.	 Make a backup copy of /etc/securetty with the following command:

cp /etc/securetty /etc/securetty.bak

2.	 Edit /etc/securetty and remove the lines for tty3 through tty11. Save the changes
and exit.

3.	 Use alt-f3 (ctrl-alt-f3 if you’re running X Window) to switch to virtual console
number 3. Try to log in as root. What happens?

4.	 Repeat Step 3 as a regular user. What happens? Do you know why?
5.	 Use alt-f2 to switch to virtual console number 2 and try to log in as root.
6.	 Review the messages in /var/log/secure. Do you see where you tried to log in as root

in virtual console number 3?
7.	 Restore the original /etc/securetty file with the following command:

mv /etc/securetty.bak /etc/securetty

One thing to remember is that the /etc/securetty file governs the consoles from which
you can log in as the root user. Therefore, the changes that were made do not affect regular
(non-root) users.

PAM and User-Based Security
In this section, you’ll learn how to configure PAM to limit access to specific users. The key
to this security feature is the pam_listfile.so module, which is located in the /usr/lib64/
security directory. If you’ve installed the vsFTP server, the /etc/pam.d/vsftpd file includes an
example of this module.

520  Chapter 10  A Security Primer

First, the following line in the vsftpd file initializes and clears out any existing key rings
when the session is closed:.

session optional pam_keyinit.so force revoke

The way PAM can limit user access is shown in the next rule:

auth required pam_listfile.so item=user sense=deny 
file=/etc/vsftpd/ftpusers onerr=succeed

To understand how this works, let’s break this rule into its component parts. You already
know the first three parts of the rule from the previous section. The options that are shown
are associated with the pam_listfile.so module, as described in the pam_listfile man page
and in Table 10-8.

Thus, for the specified rule (onerr=succeed), an error, strangely enough, returns success
(item=user). If the user is in the specified list (file=/etc/vsftpd/ftpusers), the rule allows
that user (sense=allow) to access the specified tool.

Make sure you understand
how Red Hat Enterprise Linux handles
user authorization through the /etc/pam.d
configuration files. When you test these files,
make sure you create a backup of everything

in PAM before making any changes,
because any errors that you make on a PAM
configuration file can disable access to your
system completely (PAM is that secure).

pam_listfile Option Description

item This option can be used to limit access to a terminal (tty), user (user), group
(group), or more.

sense If the item is found in the specified file, take the noted action. For example, if
the user is listed in /etc/special and sense=allow, then this command grants the
user permission for the specified tool.

file The path of the file with a list of users, groups, and so on, such as file =
/etc/special.

onerr If there is a problem, tell the module what to do. The options are
onerr=succeed or onerr=fail.

	 TABLE 10-8	   Options for the pam_listfile.so Module

Pluggable Authentication Modules  521

EXERCISE 10-4

Use PAM to Limit User Access
You can also use the PAM system to limit access to all non-root users. In this exercise,
you’ll limit access using the pam_nologin.so module. It should work hand in hand with the
default /etc/pam.d/login security configuration file, specifically the following line:

account required pam_nologin.so

1.	 Look for an /etc/nologin file. If it doesn’t already exist, create one with a message
such as the following:

I'm sorry, access is limited to the root user

2.	 Access another terminal with a command such as ctrl-alt-f2. Try logging in as a
regular user. What do you see?

3.	 Log in as the root user. You’ll see the same message; but as the root user, you’re
allowed access.

4.	 Inspect the /var/log/secure file. Did your system reject the attempted login from the
regular user? What were the associated messages for the root user?

SCENARIO & SOLUTION

You have only one public IP address, but you
need to provide Internet access to all of the
systems on your LAN. Each computer on the
LAN has its own private IP address.

Use firewalld to implement IP masquerading. Make
sure IP forwarding is active.

You have installed an SSH server on a corporate
network and want to restrict access to certain
departments. Each department has its own
subnet.

Use the /etc/hosts.deny file in the tcp_wrappers
package to block SSH access to the unwanted subnets.
A better alternative would be to use /etc/hosts.allow
to support access to desired departments, and then
use /etc/hosts.deny to deny access to everyone else.
Similar options are possible using firewalld rich rules.

You want to restrict access to a service, such as
SSH, only to certain users.

Add a line in the appropriate Pluggable Authentication
Module configuration files in /etc/pam.d to use the
pam_listfile.so module.

You want to modify the local firewall to defend
against ICMP attacks such as ping command
floods.

Modify the firewall to reject or deny certain types of
ICMP packets.

522  Chapter 10  A Security Primer

CERTIFICATION OBJECTIVE 10.05

Secure Files and More with GPG2
With the importance of network security, you should know how to encrypt files for secure
transmission. The computer standard for file encryption and signature services is known
as Pretty Good Privacy (PGP). The open-source implementation of PGP is known as the
GNU Privacy Guard (GPG). The version released for RHEL 7 is more advanced and capable,
documented as GPG version 2 (GPG2) You’ve likely already used GPG2 to verify the
authenticity of RPM packages, as discussed in Chapter 7. This section takes such checks one
step further; you’ll generate private and public keys and then use those keys to encrypt and
decrypt selected files.

Although GPG is not listed in the RHCE objectives, it’s a security topic consistent with
other security objectives discussed in this book. We believe it’s an excellent topic that might
be included in future versions of the RHCE exam.

GPG2 Commands
The GPG version 2 included in RHEL 7 has a more modular approach to encryption and
authentication. There’s even a related package used for smartcard authentication. But that’s
not the point of the new gpg2 commands. Available GPG commands are briefly described
in Table 10-9.

Table 10-9 is just intended to describe the range of capabilities associated with the RHEL 7
GPG2 packages. The focus of this section is on the encryption and decryption of files.

Command Description

gpg Symbolic link to the gpg2 command
gpg2 The GPG2 encryption and signing tool
gpg-agent GPG2 key management daemon
gpgconf Provides access and modifies configuration files in ~/.gnupg
gpg-connect-agent Utility to communicate with an active GPG2 agent
gpg-error Command to interpret a GPG2 error number
gpgsplit Command to split a GPG2 message into packets
gpgv Symbolic link to the gpg2v command
gpgv2 Command to verify GPG signatures; requires a signature file
gpg-zip Command to encrypt or sign files into an archive

	 TABLE 10-9	   GPG2 Commands

Secure Files and More with GPG2  523

Current GPG2 Configuration
While the man page for the gpgconf command suggests that it’s just used to modify the
directory with associated configuration files, that command does more. By itself, it defaults
to the --list-components switch, which specifies the full path to related executable files.
With the --check-programs switch, it makes sure all related programs can be executed.
gpgconf can also be used to check the syntax of a GPG2 configuration file. One typical
option is in the current user’s home directory, in the .gnupg/ subdirectory. Another typical
option is in the /etc/gnupg directory.

GPG2 Encryption Options
The generation of a GPG2 key includes a choice of three different cryptographic algorithms,
as listed next. Each of these algorithms includes a public and a private key. The public key
can be distributed to others for use in encrypting files and messages. The private key is used
by the owner, and is the only way to decrypt the file or message.

■■ RSA  Named for its developers, Rivest, Shamir, and Adleman. Although typical
RSA keys are 1024 or 2048 bits in length, they can be larger. Shorter keys of 512 bits
have been cracked. RSA is in the public domain.

■■ DSA  The Digital Signature Algorithm. Proposed by the U.S. National Institute of
Science and Technology, DSA has been made available for worldwide use, royalty free.
This is a U.S. government standard that uses Secure Hash Algorithm (SHA) versions
SHA-1 and SHA-2 as message digest hash functions. SHA-1 is being phased out;
SHA-2 includes six hash functions with message digests of up to 512 bits, also known
as SHA-512, the same hash as is now used for the RHEL 7 shadow password suite.

■■ ElGamal  Developed by Taher Elgamal, this probabilistic encryption algorithm
is used in GPG in combination with DSA, with an ElGamal key pair used for
encryption and another DSA key pair for making signatures. ElGamal is the first
encryption scheme based on the Diffie-Hellman key exchange method.

Generate a GPG2 Key
The gpg --gen-key command can be used to set up key pairs with different types of encryption
schemes. Before running the command, be prepared with answers to the following questions:

■■ The number of bits for the encryption keys. Normally, the maximum number of bits
is 4096, but an encryption key that complex may take a number of minutes to develop.

■■ The desired lifetime of the keys. Especially if you set up keys with a smaller number
of bits, you should assume that a determined black hat hacker would be able to
decrypt the key within some number of months or weeks.

524  Chapter 10  A Security Primer

■■ A name, an e-mail address, and a comment. Although the name and e-mail address do
not have to be real, they will be seen by others as part of the public key.

■■ A passphrase. Good passphrases should include spaces, lower- and uppercase letters,
numbers, and punctuation.

As given, the gpg --gen-key command prompts for one of four different encryption schemes.
As suggested by the (sign only) label associated with choices 3 and 4, those options work just as
digital signatures, not for encryption.

Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection?

All four options follow a similar sequence of steps. For example, if you select option 2, the
following output appears:

DSA keys may be between 1024 and 3072 bits long.
What keysize do you want? (2048)

The default is 2048 bits, which is selected if you just press enter. The command then
prompts for a key lifetime:

Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 2m

In this case, we’ve selected two months. The command responds with a date and time
two months into the future and prompts for confirmation.

Key expires at Sat 27 Apr 2015 11:14:17 AM BST
Is this correct? (y/N) y

At this point, the gpg command prompts for identifying information for the key. The
“User ID” requested here is not related to the UID in the standard Linux authentication
database. In this example, the responses are shown in bold:

Real name: Michael Jang
Email address: michael@example.com
Comment: DSA and Elgamal key

Secure Files and More with GPG2  525

You selected this USER-ID:
 "Michael Jang (DSA and Elgamal key) <michael@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o

The system should now prompt for a passphrase. Then, the gpg command goes to
work. Especially with larger keys, it may seem to pause for a few minutes with a message
about creating random bytes. You might need to run some other programs to stimulate the
process. When complete, it displays a message similar to the following:

gpg: key D385AFDD marked as ultimately trusted
public and secret key created and signed.

To make sure the public and private keys were actually written, run the following command:

$ gpg --list-key

The output should include the latest key, along with any others created from the user’s
home directory, in the .gnupg/ subdirectory. For the given options, if this is the only key pair
on the local account, you’ll see something similar to the following output:

/home/michael/.gnupg/pubring.gpg

pub 2048D/9F688440 2015-04-28 [expires: 2015-06-27]
uid Michael Jang (DSA and ElGamal) <michael@example.com>
sub 2048g/306A91C0 2015-04-28 [expires: 2015-06-27]

Use a GPG2 Key to Encrypt a File
Now you can send the public key to a remote system. To start the process, you’ll need to
export the public key. For the key pair just created, you could do so with the following
command (substitute your name for “Michael Jang”):

$ gpg --export Michael Jang > gpg.pub

Now copy that key to a remote system. The delivery vehicle, such as e-mail, a USB stick,
or the scp command shown here, is not important. This particular command from user
michael’s account would copy the gpg.pub key to user michael’s home directory on the
tester1.example.com system. If you prefer, substitute the IP address, like so:

$ scp gpg.pub tester1.example.com:

Now go to the remote system (in this case, tester1.example.com). Log in to user michael’s
account (or the account home directory to which you copied the gpg.pub key). Once
connected to that system, first check for existing GPG keys with the following command:

$ gpg --list-key

526  Chapter 10  A Security Primer

If this is a system without previous GPG keys, the list should be empty, and nothing will
appear in the output to this command. Now import the gpg.pub file into the list of local
GPG keys with the following command:

$ gpg --import gpg.pub

Confirm the import by running the gpg --list-key command again.
Now on the remote system, you can encrypt a file with the gpg command. The following

example encrypts the local keepthis.secret file:

$ gpg --out underthe.radar --recipient 'Michael Jang' 
--encrypt keepthis.secret

The username in this case is Michael Jang. If you’ve just imported a private key, the
username as shown in the output to the gpg --list-key command may be different.
Substitute as appropriate.

Now when the underthe.radar file is copied to the original system, server1.example.com,
you can start the decryption process with the private key with the following command:

$ gpg --out keepthis.secret --decrypt underthe.radar

In a console, you’d be prompted for the passphrase created earlier, with a screen similar
to that shown in Figure 10-14.

	 FIGURE 10-14	  

Prompting for a
passphrase for
decryption

Two-Minute Drill  527

CERTIFICATION SUMMARY
To help defend the data, the services, and the systems on a network, Linux provides layers
of security. If a service is not installed, a black hat hacker can’t use it to break into a system.
Those systems that are installed should be kept up to date. Such services can be protected
by firewalls, along with host- and user-based security options. Many services include their
own layers of security. RHEL 7 incorporates several recommendations from the NSA,
including SELinux.

Zone-based firewalls can regulate and protect gateways as well as individual systems.
That same firewalld daemon can be used to set up packet forwarding, as well as
masquerading of private networks. Such options can be configured directly via the CLI
using firewall-cmd, or set up with the help of the Firewall Configuration tool.

Those daemons linked to the TCP Wrappers library can be protected by appropriate
settings in the /etc/hosts.allow and /etc/hosts.deny files. If there is a conflict, /etc/hosts
.allow is read first. Regulation through TCP Wrappers is possible by user or host.

PAM supports user-based security for a number of administrative tools. They’re
configured individually through files in the /etc/pam.d directory. These files refer to
modules in the /usr/lib64/security directory.

Linux supports encryption with the help of GPG. RHEL 7 includes GPG2 for this
purpose as well as commands such as gpg to set up private/public key pairs using the RSA,
DSA, or ElGamal scheme.

TWO-MINUTE DRILL

The following are some of the key points from the certification objectives in Chapter 10.

The Layers of Linux Security
❑❑ Bastion systems are more secure because they’re configured with a single service.

With virtualization, bastion systems are now a practical option even for smaller
organizations.

❑❑ You may choose to automate at least security updates with the Software Updates
Preference tool.

❑❑ Many services include their own security options in their configuration files.
❑❑ Host-based security can be configured by domain name or IP address.
❑❑ User-based security includes specified users and groups.
❑❑ The PolicyKit can regulate security of administrative tools run from the GNOME

desktop environment.

528  Chapter 10  A Security Primer

Firewalls and Network Address Translation
❑❑ The firewalld configuration command is firewall-cmd.
❑❑ With firewalld, you can assign interfaces and source IP ranges to different zones as

well as control which traffic is allowed into a zone.
❑❑ With firewalld, you can also masquerade the IP addresses from one network on an

outside network such as the Internet.
❑❑ firewalld can also be configured with the help of the Firewall Configuration tool,

which you can start with the firewall-config command.

TCP Wrappers
❑❑ The strings -f /usr/sbin/* command can identify services that can be regulated by

TCP Wrappers.
❑❑ Clients and users listed in /etc/hosts.allow are allowed access; clients and users listed

in /etc/hosts.deny are denied access.
❑❑ Remember to use the actual executable name of the daemon in /etc/hosts.allow and

/etc/hosts.deny (normally in /usr/sbin), such as vsftpd.

Pluggable Authentication Modules
❑❑ RHEL 7 uses the Pluggable Authentication Modules (PAM) system to provide a

common application programming interface for authentication services.
❑❑ PAM modules are called by configuration files in the /etc/pam.d directory. These

configuration files are usually named after the service or command they control.
❑❑ There are four main types of PAM rules: authentication, account, password, and

session management.
❑❑ PAM configuration files include lines that list the type, the control_flag, and the

name of the actual module, followed by optional arguments.
❑❑ PAM modules are well documented in the /usr/share/doc/pam-versionnumber/txts

directory and in the man pages.

Secure Files and More with GPG2
❑❑ GPG is the open-source implementation of PGP.
❑❑ RHEL 7 includes version 2 of GPG, known as GPG2.
❑❑ GPG2 encryption and signature can use the DSA, RSA, and ElGamal keys.
❑❑ GPG2 keys can be created with the gpg --gen-key command and listed with the

gpg --list-key command.

Self Test  529

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear
in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

The Layers of Linux Security

1.	 What security option is best for a service that isn’t currently required on a system?
__

Firewalls and Network Address Translation

2.	 Consider a system with the default firewalld settings, where the following commands have been
entered:

firewall-cmd --zone=dmz --add-source=192.168.77.77
firewall-cmd --zone=dmz --remove-service=ssh

Once these are entered, and before a reboot, what effect will they have when a client with an IP
address of 192.168.77.77 tries to connect to this system?
__

3.	 What directories include the configuration files that define the firewalld services?
__

4.	 You are setting up a small office and would like to provide Internet access to a small number of
users but don’t have enough dedicated public IPv4 addresses for each system on the network.
What can you do?
__

5.	 What firewall-cmd command switch sets up masquerading?
__

530  Chapter 10  A Security Primer

6.	 What firewall-cmd command adds a rich rule to the default zone to allow HTTP connections
only from the 192.168.122.50 host?
__

7.	 What firewall-cmd command option is used to make permanent configuration changes?
__

TCP Wrappers

8.	 With TCP Wrappers configuration files, how could you limit FTP access to clients on the
192.168.170.0/24 network? Hint: the vsFTP daemon, when installed, is in /usr/sbin/vsftpd.
__

9.	 What happens to a service if you allow the service in /etc/hosts.allow and prohibit it in
/etc/hosts.deny?
__

Pluggable Authentication Modules

10.	 What are the four basic PAM rule types?

11.	 You are editing a PAM configuration file by adding a module. Which control flag immediately
terminates the authentication process if the module succeeds?
__

Secure Files and More with GPG2

12.	 What command lists the GPG public keys loaded on the current local account?
__

Self Test Answers  531

LAB QUESTIONS
Several of these labs involve exercises that can seriously affect a system. You should do these exercises
on test machines only. The second lab of Chapter 1 sets up KVM for this purpose.

Red Hat presents its exams electronically. For that reason, the labs for this chapter are available from
the media that accompanies the book, in the Chapter10/ subdirectory. They’re available in .doc, .html,
and .txt formats. In case you haven’t yet set up RHEL 7 on a system, refer to the first lab of Chapter 2
for installation instructions. The answers for each lab follow the Self Test answers for the fill-in-the-
blank questions.

SELF TEST ANSWERS

The Layers of Linux Security

1.	 The security option that is best for a service that isn’t currently required on a system is to not
install that service.

Firewalls and Network Address Translation

2.	 Based on the given commands, any connection attempt to the SSH service from the 192.168.77.77
system is rejected.

3.	 The configuration of firewalld services is stored in the /usr/lib/firewalld/services/ and
/etc/firewalld/services/ directories.

4.	 To set up a small office while providing Internet access to a small number of users, all you need is
one dedicated IP address. The other addresses can be on a private network. Masquerading makes
this possible.

5.	 The firewall-cmd command switch that sets up masquerading is --add-masquerade.
6.	 The following rich rule allows HTTP traffic from 192.168.122.50 for the default zone:

firewall-cmd --add-rich-rule='rule family=ipv4 source 
address=192.168.122.50 service name=http accept'

532  Chapter 10  A Security Primer

7.	 The --permanent option of firewall-cmd is used to make permanent configuration
changes. Don’t forget to load the saved configuration into the run-time configuration using
the firewall-cmd --reload command.

TCP Wrappers

8.	 To limit FTP access to clients on the 192.168.170.0 network, you’d allow access to the network in
/etc/hosts.allow and deny it to all others in /etc/hosts.deny. As /usr/sbin is in the root user path,
you can cite the vsftpd daemon directly and add the following directive to /etc/hosts.allow:

vsftpd : 192.168.170.0/255.255.255.0

Then you would add the following to /etc/hosts.deny:

vsftpd : ALL

9.	 If you allow a service in /etc/hosts.allow and prohibit it in /etc/hosts.deny, the service is allowed.

Pluggable Authentication Modules

10.	 The four basic PAM rule types are auth, account, password, and session. The include type refers
to one or more of the other PAM types in a different file.

11.	 The sufficient control flag immediately terminates the authentication process if the module succeeds.

Secure Files and More with GPG2

12.	 The command that lists currently loaded public keys is gpg --list-key. The gpg2 --list-key
command is also acceptable.

LAB ANSWERS

Lab 1
Verifying this lab should be straightforward. If it works, you should be able to confirm with the
following command on the tester1.example.com system:

$ gpg --list-keys

It should include the GPG2 public key just imported to that system. Of course, if the encryption,
file transfer, and decryption worked, you should also be able to read the decrypted text file in a local
text editor.

Lab Answers  533

Lab 2
This lab is somewhat self-explanatory, in that it can help you think about how to make a system more
secure. As discussed in the chapter, you can start with a minimal installation. The minimal installation
of RHEL 7 happens to include the SSH server for remote administrative access.

While RHEL 7 has greatly reduced the number of standard services installed, most users will find
some services that are not required. For example, how many administrators actually need Bluetooth
services for a RHEL 7 system installed on a virtual machine?

Lab 3
If you want to set up a RHEL computer as a secure web server, it’s a straightforward process that’s
described in Chapter 14. However, firewall configuration is part of the process covered in this chapter.
To that end, you’ll want to set up a firewall to block all but the most essential ports. This should include
TCP/IP ports 80 and 443, which allow outside computers to access local regular and secure web
services. Open ports should also include port 22 for SSH communication.

The easiest way to set this up is with the Red Hat Firewall Configuration tool, which you can start
with the firewall-config command. Once in the Firewall Configuration tool, take the following steps,
which vary slightly between the GUI- and console-based versions of the tool:

1.	 Set the Configuration mode to Permanent.
2.	 Select the “public” zone. Click the <interface> tab and ensure that the system network interfaces

are listed under this zone.
3.	 Select the Services tab and enable the http service. This allows access from outside the local

computer to the local regular website. Activate the https option as well. Make sure the ssh option
remains active.

4.	 Click Options | Reload Firewalld to apply the changes to the run-time configuration.
5.	 Enter the following command to check the resulting firewall:

firewall-cmd --list-all

6.	 Once you’ve configured a web service as described in Chapter 14, users will be able to access
both the regular and secure web servers from remote systems.

Lab 4
The following steps demonstrate two different methods to limit access to the noted system on IP address
192.168.122.150. Any of the two methods would be acceptable. These methods secure vsFTP in two
ways: through TCP Wrappers and with the appropriate firewall commands. In a “real-world” scenario,

534  Chapter 10  A Security Primer

you might use all methods in a layered security strategy. These steps assume you’re performing this lab
on the server1.example.com system.

1.	 Make sure that the vsftpd RPM is installed.
2.	 Start the FTP service. Use the systemctl start vsftpd command.
3.	 Back up the current version of the /etc/hosts.deny file. Open that file in a text editor. Add the

vsftpd : ALL EXCEPT 192.168.122.150 line.
4.	 Try accessing the FTP service from the computer with the IP address of 192.168.122.50. What

happens? Try again from a different computer on your LAN.
5.	 Restore the previous /etc/hosts.deny file.
6.	 Block the FTP service for all IP addresses except 192.168.122.150 with the following commands:

firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source 
address=192.168.122.150 service name=ftp drop'
firewall-cmd --permanent --add-service=ftp

7.	 Promote the permanent configuration into the run-time configuration with the
firewall-cmd --reload command.

8.	 Try accessing the FTP server from the computer with the IP address of 192.168.122.150. What
happens? Try again from a different computer on the LAN.

9.	 Remove the firewall rules you have added.
10.	 Bonus: Repeat these commands for the SSH service on port 22.

Lab 5
To confirm that TCP Wrappers can be used to help protect the SSH service, run the following
command:

ldd /usr/sbin/sshd | grep libwrap

Output, which includes a reference to the libwrap.so.0 library, confirms a link to the TCP Wrappers
library. In general, it’s safest to deny access to all services by including the following entry in the
/etc/hosts.deny file:

ALL : ALL

You can then set up access to the SSH service with a line like the following in the /etc/hosts.allow file:

sshd : 192.168.122.50

While in most cases the use of the fully qualified domain name for the noted IP address (server1
.example.com) should work too, the use of the IP address is often appropriate. Limits by IP address
don’t depend on connections to DNS servers or reverse DNS being accurate.

Lab Answers  535

Of course, this is not the only way to limit access to the SSH service to one system. It’s possible
within the /etc/hosts.deny file with a directive such as the following:

sshd : ALL EXCEPT 192.168.122.50

It’s possible to set this up with other security options such as the firewalld zone–based service.

Lab 6
Before this lab can work, you’ll need to activate one SELinux boolean: ftp_home_dir. It’s listed in
the SELinux Administration tool as “Determine whether ftpd can read and write files in user home
directories.” Therefore, with the key boolean identified, you should be able to set up vsFTP as described.

The description in this lab should point you to the /etc/pam.d/vsftpd configuration file. The model
command line in this file is

auth required pam_listfile.so item=user sense=deny 
file=/etc/vsftpd/ftpusers onerr=succeed

which points to the /etc/vsftpd/ftpusers file, a list of users to “deny” access to. As the conditions in the
lab suggest that you need a list of (one) user to which access is to be allowed, a second line of a similar
type in this file is appropriate. For example,

auth required pam_listfile.so item=user sense=allow 
file=/etc/vsftpd/testusers onerr=succeed

allows all users listed in the /etc/vsftpd/testusers file. The onerr=succeed directive means that the
vsFTP server still works if there’s an error elsewhere. For example, if there is no testusers file in the
/etc/vsftpd directory, the directives in this line are forgiving, allowing the conditions for the auth
module type to succeed.

As an experiment, try this lab with the boolean ftp_home_dir variable set and unset. That should
demonstrate the power of SELinux and serve as an appropriate preview of Chapter 11.

