
Chapter 17
The MariaDB Server

17.01	 Introduction to MariaDB

17.02	 Database Management

17.03	 Simple SQL Queries

17.04	 Secure MariaDB

17.05	 Database Backup
and Recovery

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

Relational databases, commonly referred to as relational database management systems
(RDBMSs), provide a standardized method to organize persistent data in a structured way.
They use tables to store data, rules to ensure uniqueness and consistency between tables,

and indexes to support rapid access. In addition, most relational database systems support the
Structured Query Language (SQL), a standard tool to retrieve data and perform many other tasks.

808  Chapter 17  The MariaDB Server

MySQL is the most popular open-source RDBMS, and it’s a key part of the “LAMP”
stack (Linux, Apache, MySQL, and Perl/Python/PHP) commonly used to support web
applications. It is also extremely easy to install, configure, and use.

Before RHEL 7, MySQL was the default RDBMS in Red Hat Enterprise Linux. After
MySQL was acquired by Oracle, Red Hat moved to MariaDB, a community-developed fork
of MySQL, licensed under the GPL. MariaDB contains additional community-developed
features and optimizations. It is not the only database that comes with RHEL. Others (most
obviously including PostgreSQL) are also available but not covered by the RHCE exam.

INSIDE THE EXAM

The ability to install and configure MariaDB
(and its equivalent MySQL) is a common
requirement for system administrators,
although it is new to the RHCE exam in
RHEL7. This chapter directly addresses the
exam objectives related to MariaDB:

■■ Install and configure MariaDB
■■ Back up and restore a database

■■ Create a simple database schema
■■ Perform simple SQL queries against a

database

In addition, this chapter covers the common
network service requirements discussed in
Chapter 11.

INSIDE THE EXAM

CERTIFICATION OBJECTIVE 17.01

Introduction to MariaDB
MySQL AB, a Swedish company, first released MySQL in 1995 as a free implementation
of an earlier database known as mSQL. The first releases were based on the existing ISAM
indexing method from IBM, which eventually turned into DB2. MySQL was included by
Red Hat in its first RHEL release and rapidly acquired popularity. RHEL 6 included MySQL
version 5.1.

In 2008 MySQL was purchased by Sun Microsystems, and in 2009 Oracle acquired Sun
Microsystems. As Oracle sells an alternative RDBMS to MySQL, this acquisition triggered
a substantial backlash both by regulatory authorities and the open-source community.

Introduction to MariaDB  809

Eventually, the European Union allowed Oracle to acquire Sun in 2010. To satisfy
governmental regulatory concerns, Oracle committed to continue to develop MySQL under
the existing “dual-source” license model.

One of the original founders of MySQL, Michael “Monty” Widenius, chose to fork
MySQL in 2009. He called it MariaDB, after his youngest daughter, Maria. Previously, he
had named MySQL after his eldest daughter. MariaDB obtained funding, and a substantial
number of developers started moving their work from MySQL to the new MariaDB project.

MariaDB was initially released with the same version numbers as MySQL to suggest
complete compatibility. After MariaDB 5.5 was released, developers changed the version
number to 10, in part to move away from full compatibility with MySQL. For our purposes,
MariaDB 5.5 is fully compatible with MySQL 5.5. In other words, clients and libraries
compiled against MySQL 5.5 will just work on a MariaDB 5.5 server.

MariaDB Installation
The RPM package mariadb-server installs mariadb-libs and mariadb as dependencies.
These packages include all files that you need to get a working MariaDB installation, such as
the server itself (mysqld), the MariaDB client (mysql), and all the Perl libraries required for
associated helper scripts.

If you want to develop applications that use MariaDB, you may need the mariadb-devel
and MySQL-python packages. However, these are beyond the scope of the RHCE exam.

For the purpose of this chapter, install the MariaDB server with the following command:

yum -y install mariadb-server

This command installs the MariaDB server, the client, and over 30 Perl modules. On
client machines, you can install the MariaDB client with the mariadb RPM package.

No configuration is required for basic operation. You can start and ensure that the
service survives a reboot with the following commands:

systemctl start mariadb
systemctl enable mariadb

The first time MariaDB starts, it writes some standard tables to the internal “mysql”
database by calling the mysql_install_db script. Any problems with this process should
appear in the file mariadb.log, located in the /var/log/mariadb directory.

The MariaDB systemd unit in /lib/systemd/system/mariadb.service includes the
directive TimeoutSec=300, which limits the amount of time for the server to start
up to 300 seconds. While sufficient for a small test database, such a small value
for TimeoutSec would lead to problems for a large, real-world database server.
Without sufficient time, a transaction recovery may result in an endless cycle of
failed starts. Fortunately, this is not an exam concern.

810  Chapter 17  The MariaDB Server

As MariaDB is a “fork” of MySQL, it retains many filenames and commands associated
with MySQL. For example, the MariaDB client command is mysql and the server daemon
is mysqld. Among others, the Python module is MySQLdb and it works with both MySQL
and MariaDB servers.

Now that the service is running, verify that it is listening on the default TCP port 3306
with the ss command. The result is shown in Figure 17-1. Note from the output of the
command that by default MariaDB listens on all interfaces available on the server.

To confirm that MariaDB is operational, connect with the mysql client. The result is
illustrated in Figure 17-2. Type quit or exit to close the session.

The mysql command has various command options, which will be explained in detail in
the following sections. The most common ones are described in Table 17-1.

	 FIGURE 17-1	  

MariaDB listens to
TCP port 3306.

	 FIGURE 17-2	  

The mysql client

mysql Command Option Description Default Value

-h Hostname/FQDN of the MariaDB
server

localhost

-p Password Try passwordless authentication
-P Custom TCP port number

(see Exercise 17-2)
3306

-u MariaDB username Current Linux username

	 TABLE 17-1	   mysql Command Options

Introduction to MariaDB  811

Initial Configuration
Although you can do more, RHEL 7 includes a working configuration of MariaDB “out of
the box.” On the job, the additional changes you make to the MariaDB configuration relate
to performance tuning.

Examine the MariaDB configuration file /etc/my.cnf shown in Figure 17-3. By default, it
contains two sections: [mysqld] and [mysqld_safe]. The [mysqld_safe] section defines the
locations of the log and process identifier (PID) files for mysqld_safe, a wrapper script that
monitors the health of the mysqld process and restarts it in the event of a hard crash.

The [mysqld] section begins with the datadir directive, which specifies the location
of the data. Next, the socket directive points to the location of the socket file. In a typical
installation, you don’t have to change these settings. The last setting in this section is the
symbolic-links directive, which prevents MariaDB from following symbolic links for
security reasons.

Note the includedir directive at the end of the my.cnf file. It loads the content of a few
other configuration files from the /etc/my.cnf.d directory.

The includedir directive in the default my.cnf file includes the contents of every
file in the /etc/my.cnf.d directory. By default, the files in this location only affect
MariaDB clients, but it is worth ensuring that no other packages have put a file
down in here when you are troubleshooting.

MariaDB ships with a script, mysql_secure_installation, to improve the security of the
default configuration. After you start the MariaDB service for the first time, run this script
as the Linux root user. It will ask a series of security-related questions interactively.

Exercise 17-1 guides you through the installation of MariaDB and the execution of the
mysql_secure_installation script.

	 FIGURE 17-3	  

The /etc/my.cnf
configuration file

812  Chapter 17  The MariaDB Server

EXERCISE 17-1

Install and Secure MariaDB
In this exercise you will install MariaDB and run the mysql_secure_installation script to
secure the installation. The script prompts you with a series of interactive questions to set a
password for the root user (different from the Linux root superuser!), disable remote logins,
remove anonymous users, and delete the default test database.

1.	 Install MariaDB:

yum -y install mariadb-server

2.	 Start the service and ensure that it is enabled at the next system boot:

systemctl start mariadb
systemctl enable mariadb

3.	 Run the mysql_secure_installation script. When you see the following prompt,
simply press enter, as there is no password for the MariaDB root user:

mysql_secure_installation
[...]
Enter current password for root (enter for none):
OK, successfully used password, moving on...

4.	 Set a new MariaDB root password. As you can see here, we have set ours to
“changeme” but you should select a real password in a production server:

Set root password? [Y/n] y
New password: changeme
Re-enter new password: changeme
Password updated successfully!
Reloading privilege tables..
 ... Success!

5.	 By default, MySQL supports connections from anonymous users. This should be
disabled, as shown here:

Remove anonymous users? [Y/n] y
 ... Success!

6.	 To further discourage black hat hackers, you should disable remote root access to
MariaDB:

Disallow root login remotely? [Y/n] y
 ... Success!

Introduction to MariaDB  813

7.	 The MariaDB installation includes a default database named test. While the mysql_
secure_installation script recommends deleting it, you can keep it for testing purposes:

Remove test database and access to it? [Y/n] n
 ... skipping.

8.	 Finally, when you flush the privilege tables, MariaDB implements your changes:

Reload privilege tables now? [Y/n] y
 ... Success!

Run MariaDB on a Nonstandard TCP Port
By default, MariaDB listens to TCP port 3306. If you want to change the default port, you
need to complete the following steps:

1.	 Open the my.cnf configuration file and add a port=num directive.
2.	 Open the noted port in your firewall.
3.	 Modify the default MariaDB port defined in the SELinux policy.

This process is relatively simple and is illustrated in Exercise 17-2.

EXERCISE 17-2

Run MariaDB on a Nonstandard TCP Port
There are three parts to this exercise: editing the MariaDB configuration file, modifying the
firewall, and changing SELinux port labeling. We assume that you want to run MariaDB on
TCP port 3307, rather than on the default 3306.

1.	 Add a port=3307 line to the [mysqld] section in /etc/my.cnf:

[mysqld]
port=3307

2.	 Allow connections to the new port in the firewall configuration of the default zone:

firewall-cmd --permanent --add-port=3307/tcp
firewall-cmd -–reload

3.	 Add the new port to the list of permitted ports for MySQL in the SELinux policy:

semanage port -a -t mysqld_port_t -p tcp 3307

814  Chapter 17  The MariaDB Server

4.	 You can now show the ports that SELinux allows MySQL and MariaDB to use. From
the following command, verify that it includes your new port:

semanage port -l | grep mysqld
mysqld_port_t tcp 3307, 1186, 3306, 63132-63164

5.	 Restart MariaDB:

systemctl restart mariadb

6.	 Connect to the server on the new port:

mysql -u root -h 127.0.0.1 -P 3307 -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 4
Server version: 5.5.35-MariaDB MariaDB Server

Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current
 input statement.
MariaDB [(none)]>

The previous command connects to the MariaDB server running on the specified IP
address (-h) and port (-P), as user root (-u), identified by a password (-p). Note that
if you specify the host to connect to as “localhost,” the MariaDB client communicates
to the local server via Unix sockets rather than on a TCP connection.

7.	 Close the session by typing quit or exit.
8.	 Remove the line that you added to /etc/my.cnf and restart MariaDB to run the ser-

vice on its default port.

If you don’t modify the SELinux policy to account for the custom port, you would see the
following error when you try to start MariaDB:

[root@server1 ~]# systemctl start mariadb.service
Job for mariadb.service failed. See 'systemctl status mariadb.service'
and 'journalctl -xn' for details.

You should also see this corresponding error in the /var/log/mariadb/mariadb.log file:

150124 8:21:27 [ERROR] Can't start server: Bind on TCP/IP port.
Got error: 13: Permission denied

Database Management  815

CERTIFICATION OBJECTIVE 17.02

Database Management
Relational database management systems such as MariaDB store information in a very
structured way. At the highest level, there are databases, which serve as containers for
related data. Within databases, data is stored in tables, with each column representing an
attribute of the data, and each row representing a record.

Database Concepts
If you have never used a RDBMS before but have worked with spreadsheet software such
as LibreOffice Calc or Microsoft Excel, you may notice similarities with the concepts
of worksheets, columns, and rows. In fact, tables in a database can, in some ways, be
considered a giant spreadsheet, with rows and columns containing data. The structure and
organization of a database into different tables and columns is referred to as the schema.

Columns can handle various different types of data, and this is defined for each column
when it is created. For example, a column may be able to store numbers up to a certain
size or up to a certain amount of text characters. Columns can be mandatory or not, and
some have a default value. When defining the schema, you can also express constraints. For
example, you can specify that a row in one table must have a unique identifier, or “link,” to a
record in another table. These rules are enforced when users attempt to insert or change any
data in the database.

Users interact with the database by means of SQL commands: some of those commands
create databases, create tables, and adjust the schema of tables; others insert data into those
tables, and still others obtain data from the database. We cover the basic operation of many
of these queries in this chapter. Table 17-2 summarizes the most important concepts of an
RDBMS.

Term Explanation

Database A collection of related tables
Table A data structure in which data is organized in columns and rows
Row or record A single item inside a table, containing the data required for that schema
Column An attribute of a record, belonging to a certain data type
Schema A specification of the properties of all data in a database
SQL command A human-readable command to manage databases, as well as add, remove, or

retrieve data, in one or more tables

	 TABLE 17-2	   Database Terminology

816  Chapter 17  The MariaDB Server

Working with Databases
The default MariaDB installation includes a few databases. To list the currently installed
databases, connect to MariaDB using the mysql client:

mysql -p

Then run the SHOW DATABASES SQL command:

MariaDB [(none)]> SHOW DATABASES;

The output is shown in Figure 17-4. Note that four databases are available (three if you
deleted the test database in Exercise 17-1):

■■ mysql  An internal database for MariaDB to manage users and permissions
■■ information _schema and performance_schema  Specialized databases used by

MariaDB to inspect metadata and query execution at run time
■■ test  A test database

You can write SQL commands such as SHOW DATABASES in uppercase or lowercase
characters. By convention, documentation specifies SQL keywords in uppercase.

You can create a new database from the mysql client with the CREATE DATABASE
db_name command, as shown next. The new database contains no data until you create a
table and add some data to it:

MariaDB [(none)]> CREATE DATABASE myapp;

For pretty much every command in the MariaDB shell other than the ones for creating
users and databases, you should first tell the MariaDB client that you are working in a given
database with the USE command. In MariaDB, by default, the shell prompt tells you what
database you are in (none and mysql in the following examples):

MariaDB [(none)]> USE mysql;
Database changed
MariaDB [mysql]>

	 FIGURE 17-4	  

Listing all the
databases

Database Management  817

Similarly, a database can be removed with the DROP DATABASE db_name command:

MariaDB [(none)]> DROP DATABASE test;

Working with Tables
A database is not much of a utility without one or more tables. For the RHCE exam, you are
required to “create a simple database schema.” If you want to know more about this topic,
refer to the MariaDB website (https://mariadb.com/kb/en/mariadb/create-table).

MariaDB tables consist of columns that you can configure as different data types. These
data types determine what data can be stored inside a column. You can represent most of
the different data formats with the data types listed in Table 17-3.

You should also add indexes to a table to retrieve data without having to read every row
(called a “table scan”). This is critical for performance for larger tables. Generally, these
involve two types of indexes: unique indexes and secondary indexes.

A unique index should specify something unique about a row, such as an ID number.
A special type of unique index is one created with the PRIMARY KEY keyword, which is
used internally by MariaDB to identify a given row. If you don’t specify a primary key, the
default storage engine in MariaDB will automatically create a primary key on a commonly
used column.

Conversely, secondary indexes don’t specify a unique element in a row and are used to
speed up queries that rely on a key other than the primary key and avoid table scans.

To create a new table, use the CREATE TABLE command. Here is the syntax of this
command in its simplest form:

CREATE TABLE table_name (
 col_name1 INT|FLOAT|VARCHAR|TEXT|BLOB|DATETIME [NOT NULL|AUTO_INCREMENT],
 col_name2 INT|FLOAT|VARCHAR|TEXT|BLOB|DATETIME [NOT NULL|AUTO_INCREMENT],
 ...
 PRIMARY KEY (col_name1)
);

Data Type Description

INT 32-bit integer
FLOAT Single-precision floating-point number
VARCHAR Variable-length string
TEXT Large string
BLOB Binary object
DATETIME Date and time

	 TABLE 17-3	  

MariaDB Data
Types

818  Chapter 17  The MariaDB Server

The command defines each column in the table, identified by a name and a type, and an
optional constraint such as NOT NULL, which prevents entries in the column from taking
an undefined value, or AUTO_INCREMENT, which automatically inserts a new unique
number when a new record is added to the table.

The PRIMARY KEY constraint tells MariaDB that the specified column is a primary key.
In other words, the given column must contain only unique non-null values.

Table 17-4 summarizes the commands related to database and table management. Each
command must be terminated by a semicolon character. Some of these commands will be
explored in Exercise 17-3.

EXERCISE 17-3

Create a Table
In this exercise you will create a simple table. Start by connecting to MariaDB with the
mysql client.

1.	 Create a database named “myapp”:

CREATE DATABASE myapp;

2.	 Tell MariaDB that the next commands will affect the myapp database:

USE myapp;

SQL Command Description

CREATE DATABASE db_name Creates the database db_name
DROP DATABASE db_name Deletes the database db_name
SHOW DATABASES Lists all databases
USE db_name The next SQL commands will have an effect on the db_name database
CREATE TABLE table_name (...) Creates the table table_name
DROP TABLE table_name Deletes the table table_name
SHOW TABLES Lists all tables in the current database
DESCRIBE table_name Displays the schema of the table table_name

	 TABLE 17-4	   SQL Database and Table Commands

Simple SQL Queries  819

3.	 Create a simple table: a list of widgets, each with an automatically generated ID. To
do so, use a CREATE TABLE statement:

CREATE TABLE widgets (
 id INT AUTO_INCREMENT,
 name VARCHAR(255),
 PRIMARY KEY (id)
);

Note that the “id” column is marked as a primary key. There is also a second column
(“name”) that can contain a string of variable length, up to 255 characters.

4.	 Display the newly created table with SHOW TABLES:

SHOW TABLES;
+-----------------+
| Tables_in_myapp |
+-----------------+
| widgets |
+-----------------+

5.	 You can show the full schema of the table with the DESCRIBE tablename
command. It will print out the schema you entered earlier. The output is shown in
Figure 17-5.

CERTIFICATION OBJECTIVE 17.03

Simple SQL Queries
SQL is a special-purpose programming language that operates both as a data manipulation
language, to modify data or the schema in a database, and as a query language, to retrieve
data from a database.

	 FIGURE 17-5	  

Display the
schema of an
existing table.

820  Chapter 17  The MariaDB Server

In the previous section, we have shown how you can use SQL commands to manage
databases and tables. In this section, we provide a brief introduction to several SQL
commands to retrieve and insert data.

After creating a database and a table, you can make changes to the data with the
SQL statements INSERT, SELECT, UPDATE, and DELETE. These are the basic SQL
commands required by the RHCE exam.

In computer programming, the SQL INSERT, SELECT, UPDATE, and DELETE
statements are also referred as "CRUD" operations, where the letters of the
acronym stand for "Create, Read, Update, and Delete."

The INSERT SQL Command
The INSERT statement adds a record into a table. The syntax of the command is as follows:

INSERT INTO table_name (field1, field2) VALUES ('a', 'b');

For example, you can insert a new record into the widgets table with the following
command:

MariaDB [myapp]> INSERT INTO widgets (id, name) VALUES (1, "widget A");
Query OK, 1 row affected (0.01 sec)

This command adds a new record to the table widgets with the integer value “1” in the id
column and the string “widget A” in the name column.

Since we defined the id column as AUTO_INCREMENT in Exercise 17-3, MariaDB
automatically gives a unique and incrementing ID to the next row you insert. Hence, you
don’t even need to specify the id field when you add a row:

MariaDB [myapp]> INSERT INTO widgets (name) VALUES ("widget B");
Query OK, 1 row affected (0.01 sec)

This SQL statement adds a new record to the table widgets with the string “widget B” in
the name column. MariaDB will automatically assign the value “2” to the id field.

As we defined the id column to be a PRIMARY KEY, this means that each value in the
column must be unique. If you create a new row with the same ID as the previous one,
MariaDB will return an error:

MariaDB [myapp]> INSERT INTO widgets (id, name) VALUES (2, "widget C");
ERROR 1062 (23000): Duplicate entry '2' for key 'PRIMARY'

Simple SQL Queries  821

The SELECT SQL Command
As you have some records stored in the widget table, you can now use the SELECT statement
to retrieve the data from the table. In its simplest form, the command syntax is as follows:

SELECT field1, field2 FROM table_name [WHERE field2 = "value"];

For example, the next command lists all rows in the table named widgets:

MariaDB [myapp]> SELECT id, name FROM widgets;
+----+----------+
| id | name |
+----+----------+
1	widget A
2	widget B
3	widget C
+----+----------+
3 rows in set (0.00 sec)

You can also use the star wildcard to specify all the columns in a table. The following
SQL statement is equivalent to the last command:

MariaDB [myapp]> SELECT * FROM widgets;

To filter results, pass the WHERE clause to the command. The next example shows how
to retrieve a column from a row with a specific ID:

MariaDB [myapp]> SELECT name FROM widgets WHERE id=2;
+----------+
| name |
+----------+
| widget B |
+----------+
1 row in set (0.00 sec)

MariaDB supports numerous operators you can include in a WHERE clause. For example,
the <> operator matches all the entries that are not equal to a given value.

As an example, the following statement returns all records from the widgets table, whose
ID is not equal to the value “2”:

MariaDB [myapp]> SELECT * FROM widgets WHERE id<>2;
+----+----------+
| id | name |
+----+----------+
| 1 | widget A |
| 3 | widget C |
+----+----------+
2 rows in set (0.00 sec)

Table 17-5 lists the most commonly used operators.

822  Chapter 17  The MariaDB Server

The DELETE SQL Command
The DELETE statement works in a similar fashion to SELECT, except it deletes the records
matched. The syntax is illustrated in the next line:

DELETE FROM tablename WHERE field1 = "value";

For example, if you want to remove the row from the widgets table that has a value of “1”
in the id column, run the following:

MariaDB [myapp]> DELETE FROM widgets WHERE id=1;
Query OK, 1 row affected (0.01 sec)

The following SELECT query confirms that the corresponding row has been removed
from the table:

MariaDB [myapp]> SELECT * widgets;
+----+----------+
| id | name |
+----+----------+
| 2 | widget B |
| 3 | widget C |
+----+----------+
2 rows in set (0.00 sec)

The UPDATE SQL Command
Finally, the UPDATE SQL statement allows you to update one or more rows. This command
is slightly more complicated—you have to include the table you are modifying, the change
you want to make, and the affected rows:

UPDATE table_name SET field1="value" WHERE field2="value";

MariaDB Operator Description

= Equal
<> Not equal
> Greater than
< Less than
>= Greater or equal than
<= Less or equal than
LIKE Searches for a pattern—for example, WHERE name LIKE “pattern”
IN Lists all possible values for a field—for example, WHERE id IN (1,2,4)

	 TABLE 17-5	   MariaDB Operators

Simple SQL Queries  823

For example, the next command sets the value in the name column to a new value, for the
record whose ID is equal to “2”:

MariaDB [myapp]> UPDATE widgets SET name='Widget with a new name' WHERE id=2;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The following SELECT statement confirms that the change has been applied:

MariaDB [myapp]> SELECT * from widgets;
+----+------------------------+
| id | name |
+----+------------------------+
| 2 | Widget with a new name |
| 3 | Widget C |
+----+------------------------+
2 rows in set (0.00 sec)

Table 17-6 summarizes the SQL queries we have described so far.

EXERCISE 17-4

Practice with Simple SQL Queries
In this exercise, you will import a freely available test database to provide sufficient data to
be able to explore some slightly more challenging SQL queries.

1.	 Connect to the MySQL client as root:

mysql –u root -p

2.	 Create a new database named “employees”:

MariaDB [(none)]> CREATE DATABASE employees;

SQL Statement Example

INSERT INSERT INTO table_name (field1, field2) VALUES (“value1”, "value2”);
SELECT SELECT field1, field2 FROM table_name WHERE field1=“value”
UPDATE UPDATE table_name SET field1=“value” WHERE field2=“value”
DELETE DELETE FROM table_name WHERE field=“value”;

	 TABLE 17-6	   Summary of Common SQL Queries

824  Chapter 17  The MariaDB Server

3.	 Return to the shell (with the quit command). We will use a standard test database
that is available from the media that accompanies this book. Insert the media,
navigate to the Chapter17/ subdirectory, and copy the employees_db-full-1.0.6.tar.
bz2 file to the local drive.

4.	 Extract and import the database using the following commands:

tar xvfj employees_db-full-1.0.6.tar.bz2
cd employees_db
cat employees.sql | mysql -u root -p employees

5.	 Wait for the files to load and verify that the new tables exists, as shown next:

mysql -u root -p
MariaDB [(none)]> USE employees;

6.	 Find the schema of the departments table:

Simple SQL Queries  825

7.	 Display all the content of the departments table:

		 Now, try a slightly more difficult example. You will search for the employee with the
highest salary. First, display the schema of the “salaries” table:

8.	 Identify the employee with the highest salary. To do so, we introduce a new clause,
ORDER BY field, which orders the results of a SELECT query based on the values
of a specified column. The optional DESC keyword sorts the results in descendent
order. In addition, the number of records returned by the query can be limited to a
maximum amount with the LIMIT num clause.

826  Chapter 17  The MariaDB Server

9.	 The result is shown here:

10.	 From the output of the last query, you can see that the employee with ID 43624 has a
salary of $158,220.

11.	 The next step is to find the details of such employee in the corresponding “employee”
table. To do so, run a SELECT query with a WHERE clause to display the record for
the employee with ID 43624:

To combine data from multiple tables, you can use a SQL join clause, rather than
the step-by-step procedure illustrated in Exercise 17-4. As an example, the final
result in Exercise 17-4 can be retrieved with a single query:
SELECT * FROM employees NATURAL JOIN salaries ORDER BY salary DESC LIMIT 1;
However, this is beyond the scope of the RHCE exam.

CERTIFICATION OBJECTIVE 17.04

Secure MariaDB
In a default installation, MariaDB accepts connections from any system on the network.
Access is granted to the root user without a password.

Clearly, this is not a secure configuration. In a previous section, we explained how to
secure a MariaDB installation with the mysql_secure_installation script. However, there’s
more to do to set up a secure installation.

Secure MariaDB  827

You may have applications that need to connect to MariaDB. For example, a web service
may need access. While you can support remote access by some systems, you should ensure
that access is prohibited to all other hosts. MariaDB provides a flexible permission scheme
that allows you to specify all the types of commands a user can run on the system.

Host-Based Security
You should start by prohibiting remote access to MariaDB, if possible. Alternatively, you can
limit access only to the systems that should be entitled to connect to it. There are two key
directives available to this regard in /etc/my.cnf:

■■ skip-networking  Prevents MariaDB from listening on any TCP connection. This
does not limit access from the local system via Unix sockets.

■■ bind-address  Allows MariaDB to listen to a specific IP address. If you set this
directive to 0.0.0.0, MariaDB listens for connections on all local IPv4 addresses. This
is the default setting. If you set it to ::, MariaDB listens for traffic on all IPv4 and
IPv6 addresses. On systems with multiple interfaces and IP addresses, you may want
MariaDB to listen on one specific IP address only.

Of course, you can also use firewall-cmd to restrict access to MariaDB. The following
example sets a firewall rich rule that allows connections only from the host with IP address
192.168.122.1:

firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source 
address=192.168.122.1 service name=mysql accept'
firewall-cmd --reload

If you need to enable remote access to MariaDB for all hosts, run the following:

firewall-cmd --permanent --add-service=mysql
firewall-cmd --reload

User-Based Security
Access to MariaDB is maintained via an internal user database and privileges known as “grants.”

From the MariaDB mysql client, the default username is the username you are logged
on with. So, if you are logged on the server as root, this is the default username. You can
connect as a specific user with the -u command switch. You can pass -p to ask the MariaDB
client to prompt you for a password, and -P to pass a custom TCP port. The last argument,
which is optional, specifies a database name to connect to.

828  Chapter 17  The MariaDB Server

For example, to connect to the myapp database on server 192.168.122.1 on port 3307
with username myuser and password changeme, run this command:

mysql –u myuser –pchangeme –P 3307 –h 192.168.122.1 myapp

Note that there must be no space between the -p switch and the password.

Managing MariaDB Users
MariaDB uses the internal mysql database to manage users and permissions. To list the
current users, run these SQL statements:

MariaDB [(none)]> USE mysql;
MariaDB [mysql]> SELECT user, host from mysql.user;

You can create a new user with the CREATE USER command. The syntax is illustrated
in the following example:

CREATE USER appuser@'192.168.122.1' IDENTIFIED BY 'changeme';

This SQL command creates a user named “appuser” that can connect only from the host
with IP address 192.168.122.1, with the password “changeme.” New users are not assigned any
privileges, so you must specifically assign the permissions that a user should be entitled to.

Managing User Privileges
Each user can be assigned a list of permissions (“grants”) that you can display with the SQL
command SHOW GRANTS [FOR username]. A sample output is shown in Figure 17-6.

Focus on the first line of the output. This tells us that the root user connecting from the
localhost is granted ALL PRIVILEGES, on all databases and all tables (*.*), with an additional
permission known as GRANT OPTION that allows that user to create new users and assign
them grant privileges.

	 FIGURE 17-6	  

Default grants
for the MariaDB
root user

Secure MariaDB  829

If you need more
information about the syntax of a GRANT
statement, run SHOW GRANTS. It displays

the grants of the currently connected user,
which you can use as a template to modify
the grants of other user accounts.

A list of the most common privileges is shown in Table 17-7.
Each GRANT statement is applied either globally (*.*), to a given database (db_name.*),

or to a given table (db_name.table_name). GRANT statements add more privileges; to
revoke a privilege, use the REVOKE command.

To put this into practice, we will create a user named “appowner” that can log in to
MariaDB from any host ('%'), with full privileges on the myapp database and “password123”
as a password:

MariaDB [(none)]> CREATE USER appowner@'%' IDENTIFIED BY 'password123';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp.* TO appowner@'%';

The previous commands can be merged into a single GRANT command. In other words,
the next statement has the same effect as the previous ones:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp.* TO appowner@'%'
 -> IDENTIFIED BY 'password123';

Grant Privilege Description

ALL PRIVILEGES Grants all privileges, with the exception of GRANT OPTION.
WITH GRANT OPTION Allows for creating a new user and assigning permissions up to the level of

the current user.
CREATE Gives the permission to create new databases and tables.
DROP Allows for deleting databases and tables.
ALTER Used to modify a table, such as to add or remove columns.
DELETE Use the SQL DELETE statement to delete rows from a table.
INSERT Use the SQL INSERT statement to create rows in a table.
SELECT Use the SQL SELECT statement to retrieve data from a table.
UPDATE Use the SQL UPDATE statement to modify rows in a table.

	 TABLE 17-7	   Grant Privileges

830  Chapter 17  The MariaDB Server

If you want a user to be able to log in to MariaDB from the localhost via both TCP and
Unix socket connections, you should run the GRANT command twice and specify the host
as 127.0.0.1 and localhost. An example of this syntax is provided in Exercise 17-5.

MariaDB stores privileges internally in a database called “mysql.” When you make
changes to user permissions, these are reflected in a database table. However, MariaDB does
not implement these changes until you “flush” these privileges (or restart the service). At the
MariaDB prompt, the required command is FLUSH PRIVILEGES:

MariaDB [(none)]> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

Next, you can verify that the new user account
works by connecting to the mysql client and
listing the current user’s grants.

Deleting MariaDB Users
To delete a MariaDB user, run the DROP USER
statement. An example is shown here:

MariaDB [(none)]> DROP USER appowner;

This command has an immediate effect and does not require you to flush the user’s
privileges.

EXERCISE 17-5

Practice MariaDB User’s Permissions
In this exercise, we assume that you have completed Exercise 17-3 and created a “myapp”
database. You will create two MariaDB users:

■■ apprw  This user is identified by the password “pass123” and has read, write,
update, and delete permissions to all the tables in the myapp database. The user can
log in from any host.

■■ appro  This user is identified by the password “pass456” and has read permissions
to all the tables of the myapp database. The user can log in only from the localhost.

1.	 Connect to the MySQL client as root:

mysql –u root -p

2.	 Create the apprw user with the following command:

MariaDB [(none)]> GRANT SELECT, INSERT, UPDATE, DELETE ON myapp.*
 -> TO apprw@'%' IDENTIFIED BY 'pass123';

Don’t forget to run FLUSH
PRIVILEGES after modifying a user’s grants.

Database Backup and Recovery  831

3.	 Create the appro user:

MariaDB [(none)]> GRANT SELECT ON myapp.* TO appro@'127.0.0.1' IDENTIFIED
 -> BY 'pass456';
MariaDB [(none)]> GRANT SELECT ON myapp.* TO appro@'localhost';

4.	 Apply the new privileges:

MariaDB [(none)]> FLUSH PRIVILEGES;

5.	 Open a new terminal window and check that the new users can connect to MariaDB
using the mysql client. For example, to connect as the appro user, run the following:

mysql -u appro -h localhost -ppass456 myapp

6.	 Run a simple SELECT query, such as the following:

MariaDB [myapp]> SELECT * from widgets;

Does this command work for the appro and apprw users?
7.	 Run an INSERT query:

MariaDB [myapp]> INSERT INTO widgets (name) VALUES ("test widget");

Does this command work for the appro and apprw users?
8.	 Exit the mysql client with the quit command.

CERTIFICATION OBJECTIVE 17.05

Database Backup and Recovery
MariaDB ships with the mysqldump backup program, which converts the entire contents of
one or more tables or databases into SQL statements that would be required to re-create them.

Data can also be exported by redirecting the result of a SELECT query into a file. This
can be done through the SELECT INTO OUTFILE statement, or by executing a query
from the mysql command and redirecting the output to a file.

Back Up and Restore with mysqldump
The mysqldump command outputs SQL statements to the standard output. To make that
output useful, you can redirect the output to a .sql file, or capture any errors that are sent

832  Chapter 17  The MariaDB Server

to stderr. For example, you can save the content of the widgets table created earlier with the
following command:

[root@server1 ~]# mysqldump -u appowner -p myapp widgets > /tmp/widgets.sql

If mysqldump returns any errors, make sure that the database and table exist, and that
the user has permissions to access the database and retrieve its contents.

Figure 17-7 shows the contents of the file generated by the previous command after
some of the comment lines have been removed.

The first command is a DROP TABLE IF EXISTS statement. This line removes the
widgets table only if it already exists to avoid any error messages if the table is not present.

Next, you will see a CREATE TABLE command, which should resemble the one from
Exercise 17-3.

The LOCK and UNLOCK statements that follow prevent other commands from
modifying the contents of the table while its contents are restored with the INSERT
command.

With a backup file generated by mysqldump, you can re-create every entry in your
database from this file. For example, if you want to import this backup into a database called
myapp_restored, take the following three steps:

1.	 Create a new database:

MariaDB [(none)]> CREATE DATABASE myapp_restored;

2.	 Add a grant for the owner account:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp_restored.* TO
appowner@'%';

	 FIGURE 17-7	  

A backup
generated by
mysqldump

Database Backup and Recovery  833

3.	 Execute the contents of the dump file from the mysql client:

MariaDB [(none)]> USE myapp_restored;
MariaDB [(none)]> SOURCE /tmp/widgets.sql

As an alternative, the last step can be executed from a Bash shell with the following
command:

cat /tmp/widgets.sql | mysql -u appowner -p myapp_restored

So far, we have backed up and restored a single table. However, mysqldump can also
back up an entire database. For example, the following command creates a full backup of the
employee database:

mysqldump -u root -p employees > /tmp/employees.sql

If you want to back up all databases in your MariaDB system, substitute the --all-
databases flag for the database name:

mysqldump --all-databases -u root -p > /tmp/full-backup.sql

Back Up with a Dump of the Data to a Text File
If you have a large amount of data, you can create a dump of the data in a text file (for
example, to be imported by another application). There are two ways to create a file with
specific rows in it: using the SELECT INTO OUTFILE statement and the -e flag to the
mysql command.

SELECT INTO OUTFILE creates a file on the server that contains the requested table
rows. For example, the following command selects all the employee IDs and names and
saves the result in the /tmp/employees.data file:

MariaDB [employees]> SELECT emp_no, first_name, last_name FROM employees
 -> INTO OUTFILE '/tmp/employees.data';
Query OK, 300024 rows affected (0.12 sec)

As another option, you can use standard output redirection and the -e flag to the mysql
command:

mysql employees -e "SELECT emp_no, first_name, last_name \
FROM employees" > /tmp/employees.data

You should be aware that while the mysqldump command can back up and restore the
data and schema of a database, the commands illustrated in this section cannot back up
the schema. In addition, there isn’t a standard and easy procedure for restoring the data
generated by a SELECT INTO OUTFILE statement into a database or table.

834  Chapter 17  The MariaDB Server

CERTIFICATION SUMMARY
MariaDB is a very popular relational database management system, derived from and fully
compatible with MySQL. The mariadb-server RPM package installs the server components,
whereas the client and libraries are included with the mariadb and mariadb-libs packages.

The default configuration in RHEL 7 works “out of the box,” and no changes are required
to the /etc/my.cnf configuration file. However, at a minimum you should secure the
installation by running the mysql_secure_installation script.

Like in many other relational database management systems, a MariaDB database is
organized into different tables. Each table consists of columns of various data types and
rows (or records). The specification of the properties of all data in a database is known
as the schema. Databases and tables can be created with the CREATE DATABASE and
CREATE TABLE statements. Other SQL statements perform the most common “CRUD”
(create, read, update, delete) operations. These are INSERT, SELECT, DELETE, and
UPDATE.

MariaDB supports some host-based security directives in the /etc/my.cnf configuration
file, such as skip-networking to disable TCP connectivity, and bind-address, to listen for
connections on a specific IP address. Access to the server can also be restricted on the local
zone-based firewall.

User access is managed with the GRANT statement. This command can assign a specific
set of permissions to each user, either on a per-database or per-table basis. After modifying
user permissions, you must apply the changes with the FLUSH PRIVILEGES command.

The mysqldump command can perform a full backup of the contents and schema of a
single table, a database, or all the databases on a system. The backup can be saved into a file,
which can be passed to the mysql client as a script to restore the backup into MariaDB.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 17.

Introduction to MariaDB
❑❑ MariaDB is an RDBMS included in the base RHEL7 repositories. It is a community-

developed fork of MySQL released under the GPL license.
❑❑ The server package is provided by the mariadb-server RPM, whereas the client is in

the mariadb RPM.
❑❑ The main MariaDB configuration file is /etc/my.cnf.
❑❑ The port=num directive in /etc/my.cnf can be used to run the service on a different port.

Two-Minute Drill  835

❑❑ The mysql_secure_installation script can be used to secure a MariaDB server
installation by assigning a password to the MariaDB root user, disabling remote
logins, removing anonymous users, and deleting the default test database.

Database Management
❑❑ Databases store data in tables.
❑❑ Tables are a sort of giant spreadsheet, with rows and columns containing data.
❑❑ The schema defines how data is organized and structured into a database.
❑❑ The CREATE DATABASE and CREATE TABLE SQL commands create a new

database and table, respectively.

Simple SQL Queries
❑❑ Data can be retrieved, inserted, edited, and modified with the SQL SELECT,

INSERT, UPDATE, and DELETE statements.
❑❑ The WHERE clause filters the results or applies a condition to a SQL statement.
❑❑ The ORDER BY clause sorts the records of a query in ascending or descending (with

the DESC keyword) order.
❑❑ The LIMIT clause restricts the amount of records returned by a query.

Secure MariaDB
❑❑ The skip-networking directive in /etc/my.cnf disables TCP connections to the

database and allows access only via Unix sockets.
❑❑ The bind-address directive specifies the IP address that MariaDB should listen to

for connections.
❑❑ MariaDB users can be assigned a list of permissions (“grants”) with the GRANT

command.
❑❑ Permissions must be applied with the FLUSH PRIVILEGES command.

Database Backup and Recovery
❑❑ Backups of an entire database or specific tables can be taken with the mysqldump

command.
❑❑ Databases can be restored from a SQL file (such as one created by mysqldump) by

redirecting its contents to the mysql command.
❑❑ Data can be saved into a file with the SELECT INTO OUTFILE statement.

836  Chapter 17  The MariaDB Server

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear
in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

Introduction to MariaDB

1.	 Which RPM package provides the MariaDB server?
__

2.	 Which four actions are performed by the mysql_secure_installation script?
__

3.	 Which configuration directive runs MariaDB on TCP port 33066?
__

Database Management

4.	 What SQL command would you use to create a database named foo?
__

5.	 What SQL command would you use to create a table named person, containing two columns to
store the first and last name?
__

Simple SQL Queries

6.	 What SQL command would you run to print all the records in the table salaries, where the value
in the column salary is greater than or equal to 10,000?
__

Lab Questions  837

7.	 What SQL command would you run to insert the values 7 and “finance” in the column id and
department of the departments table?
__

8.	 What SQL command would you run to delete all the records in the employees table where the
last_name column is equal to “Smith”?
__

9.	 What SQL command would you run to change the value of the first_name column to “Adam” in
the employees table where the id column is equal to 5?
__

Secure MariaDB

10.	 To disable all TCP connections, what directive would you include in /etc/my.cnf?
__

11.	 What command would you use to set up a user named “redhat” with password “redhat”? Also,
give that user read-only access to a table named bar on the database foo, and grant access only
from the IP address 192.168.1.1.
__

12.	 How do you display what privileges you have as a user logged in to a MariaDB client?
__

Database Backup and Recovery

13.	 What is the command to back up the entire database foo to a text file /tmp/foo.sql?
__

LAB QUESTIONS
Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’s assumed that you’re running these exercises on virtual machines such as KVM. For this
chapter, it’s also assumed that you may be changing the configuration of a physical host system for such
virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this chapter are available in
the Chapter17/ subdirectory from the media that accompanies the book. In case you haven’t yet set up
RHEL 7 on a system, refer to Chapter 1 for installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

838  Chapter 17  The MariaDB Server

SELF TEST ANSWERS

Introduction to MariaDB

1.	 The mariadb-server RPM package installs the MariaDB server.
2.	 The mysql_secure_installation script sets a password for the MariaDB root user, disables remote

logins, removes anonymous users, and deletes the default test database.
3.	 The directive port=33066 in /etc/my.cnf runs MariaDB on TCP port 33066. You would also need

to configure the local firewall and customize the default SELinux policy to allow MariaDB to
accept connections on that port.

Database Management

4.	 The following SQL command creates a database named foo:

CREATE DATABASE foo;

5.	 The following command creates a table named person, with two columns to store the first and last
name:

CREATE TABLE person (
 first_name VARCHAR(255),
 last_name VARCHAR(255)
);

Simple SQL Queries

6.	 The following SQL statement prints all the records in the table salaries, where the value in the
column salary is greater than or equal to 10,000:

SELECT * FROM salaries WHERE salary >=10000;

7.	 The following SQL statement adds a record with the values 7 and “finance” in the columns id and
department of the departments table:

INSERT INTO departments (id, department) VALUES (7, "finance");

8.	 The following SQL statement deletes all the records in the employees table where the last_name
column is equal to “Smith”:

DELETE FROM employees WHERE last_name="Smith";

Lab Answers  839

9.	 The following SQL statement modifies the value of the first_name column to “Adam” in the
employees table where the id column is equal to 5:

UPDATE employees SET first_name="Adam" WHERE id=5;

Secure MariaDB

10.	 To disable all remote TCP connections, add the skip-networking directive in the [mysqld]
section of /etc/my.cnf.

11.	 The following command sets up a user named “redhat” with password “redhat” and read-only
access to a table named bar on the database foo from the IP address 192.168.1.1:

GRANT SELECT ON foo.bar TO redhat@192.168.1.1 IDENTIFIED BY 'redhat';

Don’t forget to run FLUSH PRIVILEGES to make the change effective.
12.	 To list the privileges of the current user, run the SHOW GRANTS command.

Database Backup and Recovery

13.	 The following command backs up the entire database foo to a text file /tmp/foo.sql:

mysqldump -uuser -ppass foo > /tmp/foo.sql

LAB ANSWERS

Lab 1
This lab is a skill drill—practice it until you can do it without thinking. Install the mariadb-server
package, start and enable the MariaDB service, run mysql_secure_installation, and ensure that the
local firewall allows MySQL connections.

Then, connect as the MariaDB root user with the mysql client from the localhost, and run the fol-
lowing commands:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'letmein'
WITH GRANT OPTION;
FLUSH PRIVILEGES;

To test, connect to the database server from a remote host:

mysql -h 192.168.122.50 -uroot –pletmein

840  Chapter 17  The MariaDB Server

Lab 2
The first part of this lab was covered in Exercise 17-4.

To create the new user and assign the required permissions, execute the following SQL commands:

GRANT SELECT ON employees.departments TO labuser@'%' IDENTIFIED BY
'changeme';
GRANT SELECT ON employees.dept_emp TO labuser@'%';
GRANT SELECT ON employees.dept_manager TO labuser@'%;
GRANT SELECT ON employees.employees TO labuser@'%';
GRANT SELECT ON employees.titles TO labuser@'%';
FLUSH PRIVILEGES;

Lab 3
The queries in question 4 of this lab can be solved using a single SQL join query. However, SQL join
clauses are beyond the scope of the Red Hat exam. Hence, we have provided the answers using simple
SELECT statements.

To explore the structure of the employees database, use the SHOW TABLES and DESCRIBE
table_name commands.

1.	 Execute the following query to retrieve all employees born on the 31st of October 1963:

SELECT * FROM employees WHERE birth_date='1963-10-31';

This query should return 61 records.
2.	 The second question is similar to the previous, but requires a second condition in the WHERE

clause:

SELECT * FROM employees WHERE birth_date='1963-10-20' AND gender='F';

The query should return 25 records.
3.	 To find the youngest employee, retrieve all the first few records from the employee table, sorted

by birth data in descending order:

SELECT * FROM employees ORDER BY birth_date DESC LIMIT 5;

The youngest employees were born on the 1st of February 1965.
4.	 This question requires multiple queries to be answered. First, find the relevant record for Eran

Fiebach in the employee table:

SELECT * FROM employees WHERE first_name="Eran" AND last_name="Fiebach";

This query should return the employee number of 50714 for Eran Fiebach. Next, retrieve the job title
using this information:

SELECT * FROM titles WHERE emp_no='50714';

Lab Answers  841

The job title returned by the query is Technique Leader. The last step is to find the salary informa-
tion for this employee number:

SELECT * FROM salaries WHERE emp_no='50714';

This query should return 14 salaries for Eran Fiebach. You should find that her starting salary was
$40,000, while the current salary is $57,744.

Lab 4
As discussed in the answers to Lab 3, you may need to study the structure of the database using the
SHOW TABLES and DESCRIBE table_name commands.

Then, add a record for the new employee in the employees table:

INSERT INTO employees (emp_no, birth_date, first_name, last_name, gender,
hire_date) VALUES ('500000', '1990-06-09', 'Julia', 'Chan', 'F',
'2015-06-01');

Then, add the job title:

INSERT INTO titles (emp_no, title, from_date, to_date) VALUES ('500000',
'Senior Engineer', '2015-06-01', '9999-01-01');

Note the special date 9999-01-01 to indicate that this is a current entry for the employee.
To assign the new employee to the Development department, we need the department code. The

following query tells us that this is d005:

SELECT * FROM departments;

With this information, we assign the employee to the Development department:

INSERT INTO dep_emp (emp_no, dept_no, from_date, to_date) VALUES ('500000',
'd005', '2015-06-01', '9999-01-01');

The last step consists of adding the salary information:

INSERT INTO salaries (emp_no, salary, from_date, to_date) VALUES ('500000',
'60000', '2015-06-01', '9999-01-01');

Lab 5
Create the backup with the following command:

mysqldump -p employees employees | gzip >> /root/emp.sql.gz

It is also perfectly acceptable to save the raw SQL file and then run gzip to compress the file. To
verify that the backup is valid, explore the contents of the file:

less /root/emp.sql.gz

842  Chapter 17  The MariaDB Server

Ensure that you have backed up only the contents of the employees table from the employees database.
To restore the backup, first create the new database:

CREATE DATABASE emp_restored;

Then import the contents of the backup:

gunzip /root/emp.sql.gz
cat emp.sql | mysql -p emp_restored

As a final check, verify that the data looks the same by running the SQL query that you used to
answer part 1 of Lab 3.

	_GoBack

