Chapter 17

The MariaDB Server

CERTIFICATION OBJECTIVES

17.01
17.02
17.03
17.04

Introduction to MariaDB
Database Management
Simple SQL Queries

Secure MariaDB

17.05

4
Q&A

Database Backup
and Recovery

Two-Minute Drill
Self Test

elational databases, commonly referred to as relational database management systems
(RDBMSs), provide a standardized method to organize persistent data in a structured way.
They use tables to store data, rules to ensure uniqueness and consistency between tables,
and indexes to support rapid access. In addition, most relational database systems support the
Structured Query Language (SQL), a standard tool to retrieve data and perform many other tasks.

808 Chapter 17 The MariaDB Server

MySQL is the most popular open-source RDBMS, and it’s a key part of the “LAMP”
stack (Linux, Apache, MySQL, and Perl/Python/PHP) commonly used to support web
applications. It is also extremely easy to install, configure, and use.

Before RHEL 7, MySQL was the default RDBMS in Red Hat Enterprise Linux. After
MySQL was acquired by Oracle, Red Hat moved to MariaDB, a community-developed fork
of MySQL, licensed under the GPL. MariaDB contains additional community-developed
features and optimizations. It is not the only database that comes with RHEL. Others (most
obviously including PostgreSQL) are also available but not covered by the RHCE exam.

INSIDE THE EXAM

The ability to install and configure MariaDB B Create a simple database schema

(and its equivalent MySQL) is a common B Perform simple SQL queries against a

requirement for system administrators, database

although it is new to the RHCE exam in

RHEL?7. This chapter directly addresses the In addition, this chapter covers the common

exam objectives related to MariaDB: network service requirements discussed in
Chapter 11.

B Install and configure MariaDB

B Back up and restore a database

CERTIFICATION OBJECTIVE 17.01

Introduction to MariaDB

MySQL AB, a Swedish company, first released MySQL in 1995 as a free implementation
of an earlier database known as mSQL. The first releases were based on the existing ISAM
indexing method from IBM, which eventually turned into DB2. MySQL was included by
Red Hat in its first RHEL release and rapidly acquired popularity. RHEL 6 included MySQL
version 5.1.

In 2008 MySQL was purchased by Sun Microsystems, and in 2009 Oracle acquired Sun
Microsystems. As Oracle sells an alternative RDBMS to MySQL, this acquisition triggered
a substantial backlash both by regulatory authorities and the open-source community.

Introduction to MariaDB 809

Eventually, the European Union allowed Oracle to acquire Sun in 2010. To satisfy
governmental regulatory concerns, Oracle committed to continue to develop MySQL under
the existing “dual-source” license model.

One of the original founders of MySQL, Michael “Monty” Widenius, chose to fork
MySQL in 2009. He called it MariaDB, after his youngest daughter, Maria. Previously, he
had named MySQL after his eldest daughter. MariaDB obtained funding, and a substantial
number of developers started moving their work from MySQL to the new MariaDB project.

MariaDB was initially released with the same version numbers as MySQL to suggest
complete compatibility. After MariaDB 5.5 was released, developers changed the version
number to 10, in part to move away from full compatibility with MySQL. For our purposes,
MariaDB 5.5 is fully compatible with MySQL 5.5. In other words, clients and libraries
compiled against MySQL 5.5 will just work on a MariaDB 5.5 server.

MariaDB Installation

on the

The RPM package mariadb-server installs mariadb-libs and mariadb as dependencies.
These packages include all files that you need to get a working MariaDB installation, such as
the server itself (mysqld), the MariaDB client (mysql), and all the Perl libraries required for
associated helper scripts.

If you want to develop applications that use MariaDB, you may need the mariadb-devel
and MySQL-python packages. However, these are beyond the scope of the RHCE exam.

For the purpose of this chapter, install the MariaDB server with the following command:

yum -y install mariadb-server

This command installs the MariaDB server, the client, and over 30 Per]l modules. On
client machines, you can install the MariaDB client with the mariadb RPM package.

No configuration is required for basic operation. You can start and ensure that the
service survives a reboot with the following commands:

systemctl start mariadb
systemctl enable mariadb

The first time MariaDB starts, it writes some standard tables to the internal “mysql”
database by calling the mysql_install_db script. Any problems with this process should
appear in the file mariadb.log, located in the /var/log/mariadb directory.

The MariaDB systemd unit in /lib/systemd/system/mariadb.service includes the
directive TimeoutSec=300, which limits the amount of time for the server to start

Oob ypto300seconds. While sufficient for a small test database, such a small value

for TimeoutSec would lead to problems for a large, real-world database server.
Without sufficient time, a transaction recovery may result in an endless cycle of
failed starts. Fortunately, this is not an exam concern.

810 Chapter17 The MariaDB Server

FIGURE 17-1

MariaDB listens to
TCP port 3306.

[root@serverl ~]# ss -tpna | grep 3306

LISTEN [¢] 50 *:3306 i
users:(("mysqld",3584,13))

[root@serverl ~1#

As MariaDB is a “fork” of MySQL, it retains many filenames and commands associated
with MySQL. For example, the MariaDB client command is mysql and the server daemon
is mysqld. Among others, the Python module is MySQLdb and it works with both MySQL
and MariaDB servers.

Now that the service is running, verify that it is listening on the default TCP port 3306
with the ss command. The result is shown in Figure 17-1. Note from the output of the
command that by default MariaDB listens on all interfaces available on the server.

To confirm that MariaDB is operational, connect with the mysql client. The result is
illustrated in Figure 17-2. Type quit or exit to close the session.

The mysql command has various command options, which will be explained in detail in
the following sections. The most common ones are described in Table 17-1.

FIGURE 17-2

The mysql client

[root@serverl ~1# mysqgl

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 10

Server version: 5.5.35-MariaDB MariaDB Server
Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement,

MariaDB [({ncne)]>]

TABLE 17-1 mysql Command Options

mysql Command Option Description Default Value
-h Hostname/FQDN of the MariaDB localhost
server
-p Password Try passwordless authentication
-P Custom TCP port number 3306
(see Exercise 17-2)
-u MariaDB username Current Linux username

Introduction to MariaDB 811

FIGURE 17-3 [root@serverl ~1# cat /fetc/my.cnf
[mysqld]

datadir=/var/1ib/mysql
socket=/var/lib/mysgl/mysql .sock

The /etC/my'cnf # Disabling symbolic-links is recommended to prevent assorted security risks
configuration file symbolic-links=0

Settings user and group are ignored when systemd is used.

If you need to run mysgld under a different user or group,

customize your systemd unit file for mariadb according to the
instructions in http://fedoraproject.org/wiki/Systemd

[mysqgld_safe]
log-error=/var/log/mariadb/mariadb.log
pid-file=/var/run/mariadb/mariadb.pid

#

include all files from the config directory
#

!includedir /etc/my.cnf.d

[root@serverl ~1# ||

Initial Configuration

on the

Although you can do more, RHEL 7 includes a working configuration of MariaDB “out of
the box” On the job, the additional changes you make to the MariaDB configuration relate
to performance tuning.

Examine the MariaDB configuration file /etc/my.cnf shown in Figure 17-3. By default, it
contains two sections: [mysqld] and [mysqld_safe]. The [mysqld_safe] section defines the
locations of the log and process identifier (PID) files for mysqld_safe, a wrapper script that
monitors the health of the mysqld process and restarts it in the event of a hard crash.

The [mysqld] section begins with the datadir directive, which specifies the location
of the data. Next, the socket directive points to the location of the socket file. In a typical
installation, you don’t have to change these settings. The last setting in this section is the
symbolic-links directive, which prevents MariaDB from following symbolic links for
security reasons.

Note the includedir directive at the end of the my.cnf file. It loads the content of a few
other configuration files from the /etc/my.cnf.d directory.

The includedir directive in the default my.cnf file includes the contents of every
file in the /etc/my.cnf.d directory. By default, the files in this location only affect

Uob MariaDB clients, but it is worth ensuring that no other packages have put a file

down in here when you are troubleshooting.

MariaDB ships with a script, mysql_secure_installation, to improve the security of the
default configuration. After you start the MariaDB service for the first time, run this script
as the Linux root user. It will ask a series of security-related questions interactively.

Exercise 17-1 guides you through the installation of MariaDB and the execution of the
mysql_secure_installation script.

812 Chapter 17 The MariaDB Server

EXERCISE 17-1

Install and Secure MariaDB

In this exercise you will install MariaDB and run the mysql_secure_installation script to
secure the installation. The script prompts you with a series of interactive questions to set a
password for the root user (different from the Linux root superuser!), disable remote logins,
remove anonymous users, and delete the default test database.

1.

Install MariaDB:
yum -y install mariadb-server
Start the service and ensure that it is enabled at the next system boot:

systemctl start mariadb
systemctl enable mariadb

. Run the mysql_secure_installation script. When you see the following prompt,

simply press ENTER, as there is no password for the MariaDB root user:

mysgl secure installation

[...]

Enter current password for root (enter for none) :
OK, successfully used password, moving on...

Set a new MariaDB root password. As you can see here, we have set ours to
“changeme” but you should select a real password in a production server:

Set root password? [Y/n] y

New password: changeme

Re-enter new password: changeme

Password updated successfully!

Reloading privilege tables..
Success!

. By default, MySQL supports connections from anonymous users. This should be

disabled, as shown here:

Remove anonymous users? [Y/n] y
Success!

To further discourage black hat hackers, you should disable remote root access to
MariaDB:

Disallow root login remotely? [Y/n] y
Success!

Introduction to MariaDB 813

7. The MariaDB installation includes a default database named test. While the mysql_
secure_installation script recommends deleting it, you can keep it for testing purposes:

Remove test database and access to it? [Y/n] n
. skipping.

8. Finally, when you flush the privilege tables, MariaDB implements your changes:

Reload privilege tables now? [Y/n] y
. Success!

Run MariaDB on a Nonstandard TCP Port

By default, MariaDB listens to TCP port 3306. If you want to change the default port, you
need to complete the following steps:

1. Open the my.cnf configuration file and add a port=num directive.
2. Open the noted port in your firewall.
3. Modify the default MariaDB port defined in the SELinux policy.

This process is relatively simple and is illustrated in Exercise 17-2.

EXERCISE 17-2

Run MariaDB on a Nonstandard TCP Port

There are three parts to this exercise: editing the MariaDB configuration file, modifying the
firewall, and changing SELinux port labeling. We assume that you want to run MariaDB on
TCP port 3307, rather than on the default 3306.

1. Add a port=3307 line to the [mysqld] section in /etc/my.cnf:

[mysqgld]
port=3307

2. Allow connections to the new port in the firewall configuration of the default zone:

firewall-cmd --permanent --add-port=3307/tcp
firewall-cmd --reload

3. Add the new port to the list of permitted ports for MySQL in the SELinux policy:

semanage port -a -t mysqgld port t -p tcp 3307

814 Chapter 17 The MariaDB Server

4. You can now show the ports that SELinux allows MySQL and MariaDB to use. From

the following command, verify that it includes your new port:

semanage port -1 | grep mysqgld
mysgld port t tcp 3307, 1186, 3306, 63132-63164

. Restart MariaDB:

systemctl restart mariadb

. Connect to the server on the new port:

mysgql -u root -h 127.0.0.1 -P 3307 -p

Enter password:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 4

Server version: 5.5.35-MariaDB MariaDB Server

Copyright (c) 2000, 2013, Oracle, Monty Program Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.
MariaDB [(none)]>

The previous command connects to the MariaDB server running on the specified IP
address (-h) and port (-P), as user root (-u), identified by a password (-p). Note that
if you specify the host to connect to as “localhost,” the MariaDB client communicates
to the local server via Unix sockets rather than on a TCP connection.

. Close the session by typing quit or exit.

8. Remove the line that you added to /etc/my.cnf and restart MariaDB to run the ser-

vice on its default port.

If you don’t modify the SELinux policy to account for the custom port, you would see the
following error when you try to start MariaDB:

[root@serverl ~]# systemctl start mariadb.service
Job for mariadb.service failed. See 'systemctl status mariadb.service'

and

'journalctl -xn' for details.

You should also see this corresponding error in the /var/log/mariadb/mariadb.log file:

150124 8:21:27 [ERROR] Can't start server: Bind on TCP/IP port.
Got error: 13: Permission denied

Database Management 815

CERTIFICATION OBJECTIVE 17.02

Database Management

Relational database management systems such as MariaDB store information in a very
structured way. At the highest level, there are databases, which serve as containers for
related data. Within databases, data is stored in tables, with each column representing an
attribute of the data, and each row representing a record.

Database Concepts

If you have never used a RDBMS before but have worked with spreadsheet software such
as LibreOffice Calc or Microsoft Excel, you may notice similarities with the concepts

of worksheets, columns, and rows. In fact, tables in a database can, in some ways, be
considered a giant spreadsheet, with rows and columns containing data. The structure and
organization of a database into different tables and columns is referred to as the schema.

Columns can handle various different types of data, and this is defined for each column
when it is created. For example, a column may be able to store numbers up to a certain
size or up to a certain amount of text characters. Columns can be mandatory or not, and
some have a default value. When defining the schema, you can also express constraints. For
example, you can specify that a row in one table must have a unique identifier, or “link,” to a
record in another table. These rules are enforced when users attempt to insert or change any
data in the database.

Users interact with the database by means of SQL commands: some of those commands
create databases, create tables, and adjust the schema of tables; others insert data into those
tables, and still others obtain data from the database. We cover the basic operation of many
of these queries in this chapter. Table 17-2 summarizes the most important concepts of an
RDBMS.

TABLE 17-2 Database Terminology

Term Explanation

Database A collection of related tables

Table A data structure in which data is organized in columns and rows

Row or record A single item inside a table, containing the data required for that schema

Column An attribute of a record, belonging to a certain data type

Schema A specification of the properties of all data in a database

SQL command A human-readable command to manage databases, as well as add, remove, or
retrieve data, in one or more tables

816 Chapter 17 The MariaDB Server

FiGue 174 el Lt

| Database |
I R S R R +
Listing all the | information_schema |
databases | mysql
| performance schema
| test |
B +

4 rows in set (0.00 sec)

MariaDB [(none)]=]

Working with Databases

The default MariaDB installation includes a few databases. To list the currently installed
databases, connect to MariaDB using the mysql client:

mysql -p
Then run the SHOW DATABASES SQL command:

MariaDB [(none)]> SHOW DATABASES;

The output is shown in Figure 17-4. Note that four databases are available (three if you
deleted the test database in Exercise 17-1):

B mysql An internal database for MariaDB to manage users and permissions
B information _schema and performance_schema Specialized databases used by
MariaDB to inspect metadata and query execution at run time

B test A test database

You can write SQL commands such as SHOW DATABASES in uppercase or lowercase
on the characters. By convention, documentation specifies SQL keywords in uppercase.
Qob
You can create a new database from the mysql client with the CREATE DATABASE
db_name command, as shown next. The new database contains no data until you create a

table and add some data to it:

MariaDB [(none)]> CREATE DATABASE myapp;

For pretty much every command in the MariaDB shell other than the ones for creating
users and databases, you should first tell the MariaDB client that you are working in a given
database with the USE command. In MariaDB, by default, the shell prompt tells you what
database you are in (none and mysql in the following examples):

MariaDB [(none)]> USE mysql;
Database changed
MariaDB [mysqgl]>

Database Management 817

Data Type Description

MariaDB Data INT 32-bit integer
Types FLOAT Single-precision floating-point number
VARCHAR Variable-length string
TEXT Large string
BLOB Binary object
DATETIME Date and time

Similarly, a database can be removed with the DROP DATABASE db_name command:

MariaDB [(none)]> DROP DATABASE test;

Working with Tables

A database is not much of a utility without one or more tables. For the RHCE exam, you are

required to “create

a simple database schema.” If you want to know more about this topic,

refer to the MariaDB website (https://mariadb.com/kb/en/mariadb/create-table).

MariaDB tables

consist of columns that you can configure as different data types. These

data types determine what data can be stored inside a column. You can represent most of
the different data formats with the data types listed in Table 17-3.

You should also

add indexes to a table to retrieve data without having to read every row

(called a “table scan”). This is critical for performance for larger tables. Generally, these
involve two types of indexes: unique indexes and secondary indexes.
A unique index should specify something unique about a row, such as an ID number.

A special type of unique index is one created with the PRIMARY KEY keyword, which is
used internally by MariaDB to identify a given row. If you don't specify a primary key, the
default storage engine in MariaDB will automatically create a primary key on a commonly

used column.

Conversely, secondary indexes don't specify a unique element in a row and are used to
speed up queries that rely on a key other than the primary key and avoid table scans.

To create a new

table, use the CREATE TABLE command. Here is the syntax of this

command in its simplest form:

CREATE TABLE table name

(

col namel INT|FLOAT|VARCHAR|TEXT|BLOB|DATETIME [NOT NULL|AUTO INCREMENT],
col name2 INT|FLOAT|VARCHAR|TEXT|BLOB|DATETIME [NOT NULL|AUTO_ INCREMENT],

PRIMARY KEY (col namel)

)i

818 Chapter 17 The MariaDB Server

SQL Database and Table Commands

SQL Command Description

CREATE DATABASE db_name Creates the database db_name

DROP DATABASE db_name Deletes the database db_name

SHOW DATABASES Lists all databases

USE db_name The next SQL commands will have an effect on the db_name database
CREATE TABLE table_name (...) Creates the table table_name

DROP TABLE table_name Deletes the table table_name

SHOW TABLES Lists all tables in the current database

DESCRIBE table name Displays the schema of the table table_name

The command defines each column in the table, identified by a name and a type, and an
optional constraint such as NOT NULL, which prevents entries in the column from taking
an undefined value, or AUTO_INCREMENT, which automatically inserts a new unique
number when a new record is added to the table.

The PRIMARY KEY constraint tells MariaDB that the specified column is a primary key.
In other words, the given column must contain only unique non-null values.

Table 17-4 summarizes the commands related to database and table management. Each
command must be terminated by a semicolon character. Some of these commands will be
explored in Exercise 17-3.

EXERCISE 17-3

Create a Table

In this exercise you will create a simple table. Start by connecting to MariaDB with the
mysql client.

1. Create a database named “myapp”:
CREATE DATABASE myapp;
2. Tell MariaDB that the next commands will affect the myapp database:

USE myapp;

FIGURE 17-5

Display the
schema of an
existing table.

Simple SQL Queries 819

MariaDB [myappl= DESCRIBE widgets;

it Fiiimisins S S + 3o = S &b S St &= Smisins S S +
| Field | Type | Null | Key | Default | Extra

et L R Eaaii b et S SRS SIS N AR R +
| id | int(11) | NO | PRI | NULL | auto_increment

| name | varchar(255) | YES | | NULL | |
B R R +----- B R e T +

2 rows in set (0.00 sec)

MariaDB [myappl> |}

Create a simple table: a list of widgets, each with an automatically generated ID. To
do so, use a CREATE TABLE statement:

CREATE TABLE widgets (
id INT AUTO INCREMENT,
name VARCHAR (255),
PRIMARY KEY (id)

)i

Note that the “id” column is marked as a primary key. There is also a second column
(“name”) that can contain a string of variable length, up to 255 characters.

Display the newly created table with SHOW TABLES:

SHOW TABLES;

oo mmm oo +
| Tables in myapp |
e +
| widgets |
oo mme oo +

. You can show the full schema of the table with the DESCRIBE tablename

command. It will print out the schema you entered earlier. The output is shown in
Figure 17-5.

CERTIFICATION OBJECTIVE 17.03

Simple SQL Queries

SQL is a special-purpose programming language that operates both as a data manipulation
language, to modify data or the schema in a database, and as a query language, to retrieve
data from a database.

820 Chapter17 The MariaDB Server

In the previous section, we have shown how you can use SQL commands to manage
databases and tables. In this section, we provide a brief introduction to several SQL
commands to retrieve and insert data.

After creating a database and a table, you can make changes to the data with the
SQL statements INSERT, SELECT, UPDATE, and DELETE. These are the basic SQL
commands required by the RHCE exam.

In computer programming, the SQL INSERT, SELECT, UPDATE, and DELETE
on the statements are also referred as "CRUD" operations, where the letters of the
Qob acronym stand for "Create, Read, Update, and Delete.”

The INSERT SQL Command

The INSERT statement adds a record into a table. The syntax of the command is as follows:

INSERT INTO table name (fieldl, field2) VALUES ('a', 'b');

For example, you can insert a new record into the widgets table with the following
command:

MariaDB [myapp]> INSERT INTO widgets (id, name) VALUES (1, "widget A");
Query OK, 1 row affected (0.01 sec)

This command adds a new record to the table widgets with the integer value “1” in the id
column and the string “widget A” in the name column.

Since we defined the id column as AUTO_INCREMENT in Exercise 17-3, MariaDB
automatically gives a unique and incrementing ID to the next row you insert. Hence, you
don’t even need to specify the id field when you add a row:

MariaDB [myapp]> INSERT INTO widgets (name) VALUES ("widget B");
Query OK, 1 row affected (0.01 sec)

This SQL statement adds a new record to the table widgets with the string “widget B” in
the name column. MariaDB will automatically assign the value “2” to the id field.

As we defined the id column to be a PRIMARY KEY, this means that each value in the
column must be unique. If you create a new row with the same ID as the previous one,
MariaDB will return an error:

MariaDB [myappl]> INSERT INTO widgets (id, name) VALUES (2, "widget C");
ERROR 1062 (23000): Duplicate entry '2' for key 'PRIMARY'

Simple SQL Queries 821

The SELECT SQL Command

As you have some records stored in the widget table, you can now use the SELECT statement
to retrieve the data from the table. In its simplest form, the command syntax is as follows:

SELECT fieldl, field2 FROM table name [WHERE field2 = "value"];

For example, the next command lists all rows in the table named widgets:

MariaDB [myapp]> SELECT id, name FROM widgets;

e e +
| id | name |
B et T e +
1	widget A
2	widget B
3	widget C
e e +

3 rows in set (0.00 sec)

You can also use the star wildcard to specify all the columns in a table. The following
SQL statement is equivalent to the last command:

MariaDB [myapp]l> SELECT * FROM widgets;

To filter results, pass the WHERE clause to the command. The next example shows how
to retrieve a column from a row with a specific ID:

MariaDB [myapp]> SELECT name FROM widgets WHERE id=2;

R e +
| name |
R e +
| widget B |
e T +

1 row in set (0.00 sec)

MariaDB supports numerous operators you can include in a WHERE clause. For example,
the <> operator matches all the entries that are not equal to a given value.

As an example, the following statement returns all records from the widgets table, whose
ID is not equal to the value “2”:

MariaDB [myapp]> SELECT * FROM widgets WHERE id<>2;

| 1 | widget A |
| 3 | widget C |

2 rows in set (0.00 sec)

Table 17-5 lists the most commonly used operators.

822 Chapter 17 The MariaDB Server

TABLE 17-5 MariaDB Operators

MariaDB Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater or equal than

<= Less or equal than

LIKE Searches for a pattern—for example, WHERE name LIKE “pattern”

IN Lists all possible values for a field—for example, WHERE id IN (1,2,4)
The DELETE SQL Command

The DELETE statement works in a similar fashion to SELECT, except it deletes the records
matched. The syntax is illustrated in the next line:

DELETE FROM tablename WHERE fieldl = "value";

For example, if you want to remove the row from the widgets table that has a value of “1”
in the id column, run the following:

MariaDB [myapp]> DELETE FROM widgets WHERE id=1;
Query OK, 1 row affected (0.01 sec)

The following SELECT query confirms that the corresponding row has been removed
from the table:

MariaDB [myapp]> SELECT * widgets;

e e +
| 1d | name |
e e +
| 2 | widget B |
| 3 | widget C |
e e +

2 rows in set (0.00 sec)

The UPDATE SQL Command

Finally, the UPDATE SQL statement allows you to update one or more rows. This command
is slightly more complicated—you have to include the table you are modifying, the change
you want to make, and the affected rows:

UPDATE table name SET fieldl="value" WHERE field2="value";

Simple SQL Queries 823

Summary of Common SQL Queries

SQL Statement Example

INSERT INSERT INTO table_name (fieldl, field2) VALUES (“valuel’, "value2”);
SELECT SELECT fieldl, field2 FROM table name WHERE field1=“value”
UPDATE UPDATE table_name SET field1="value” WHERE field2="value”
DELETE DELETE FROM table_name WHERE field=“value”;

For example, the next command sets the value in the name column to a new value, for the
record whose ID is equal to “2”:

MariaDB [myapp] > UPDATE widgets SET name='Widget with a new name' WHERE id=2;
Query OK, 1 row affected (0.01 sec)
Rows matched: 1 Changed: 1 Warnings: 0

The following SELECT statement confirms that the change has been applied:

MariaDB [myappl> SELECT * from widgets;

e e +
| id | name |
e +
| 2 | widget with a new name |
| 3 | widget C |
e +

2 rows in set (0.00 sec)

Table 17-6 summarizes the SQL queries we have described so far.

EXERCISE 17-4

Practice with Simple SQL Queries

In this exercise, you will import a freely available test database to provide sufficient data to
be able to explore some slightly more challenging SQL queries.

1. Connect to the MySQL client as root:
mysgl -u root -p

2. Create a new database named “employees”:

MariaDB [(none)]> CREATE DATABASE employees;

824 Chapter 17 The MariaDB Server

3. Return to the shell (with the quit command). We will use a standard test database
that is available from the media that accompanies this book. Insert the media,
navigate to the Chapter17/ subdirectory, and copy the employees_db-full-1.0.6.tar.
bz2 file to the local drive.

4. Extract and import the database using the following commands:

tar xvfj employees db-full-1.0.6.tar.bz2
cd employees db
cat employees.sgl | mysgl -u root -p employees

5. Wait for the files to load and verify that the new tables exists, as shown next:

mysgl -u root -p
MariaDB [(none)]> USE employees;

MariaDB [employees]= SHOW TABLES;

| departments |
| dept_emp |
| dept_manager |
| employees |
| salaries

| titles

6 rows in set (0.00 sec)

MariaDB [employees]= ||

6. Find the schema of the departments table:

MariaDB [employees]= DESCRIBE departments;

e B +------ +----- B +------- +
| Field | Type | Null | Key | Default | Extra

e B T +------ +----- B +------- +
| dept_no | char(4) | NO | PRI | NULL | |
| dept_name | varchar(4@) | NO | UNTI | NULL | |
e B +------ +----- E e +------- +

2 rows in set (0.00 sec)

MariaDB [employees]=> []

Simple SQL Queries 825

7. Display all the content of the departments table:

MariaDB [employees]> SELECT * FROM departments;

B it +
| dept_no \ dept_name |
————————— R R LR TR,
| does | Customer Service
| does | Development |
| deez | Finance |
| doe3 | Human Resources
doel	Marketing
doe4d	Production
does	Quality Management
doosg	Research
dee7	Sales
————————— et Tt R

9 rows in set (0.00 sec)

MariaDB [employees]=> []

Now, try a slightly more difficult example. You will search for the employee with the
highest salary. First, display the schema of the “salaries” table:

MariaDB [employees]> DESCRIBE salaries;

R T s e el R Er i +
| Field | Type \ NuTl | Key | Default | Extra |
e Hommmmam - e +----- Hommmm - +----- - +
emp_no	int(11)	NO	PRI	NULL	
salary	int(11)	NO		NULL	
from_date	date	NO	PRI	NULL	
to_date	date	NO		NULL	
B B +o----- +----- Hemmmmmmm e +

4 rows in set (0.00 sec)

MariaDB [employees]= ||

8. Identify the employee with the highest salary. To do so, we introduce a new clause,
ORDER BY field, which orders the results of a SELECT query based on the values
of a specified column. The optional DESC keyword sorts the results in descendent
order. In addition, the number of records returned by the query can be limited to a
maximum amount with the LIMIT num clause.

826 Chapter17 The MariaDB Server

9. The result is shown here:

MariaDB [employees]= SELECT * FROM salaries ORDER BY salary DESC LIMIT 5;
+

e B e B +
| emp_no | salary | from_date | to_date |
+-------- +-------- B B +
| 43624 | 158220 | 2002-03-22 | 9899-01-01 |
| 43624 | 157821 | 2001-03-22 | 2002-03-22

| 254456 | 156286 | 2001-08-04 | 9899-01-01

| 47878 | 155709 | 2002-07-14 | 9899-01-081 |
| 253939 | 155513 | 2002-04-11 | 98999-01-01 |
LTy R SR L O +
5 rows in set (1.16 sec)

MariaDB [employees]= []

10. From the output of the last query, you can see that the employee with ID 43624 has a
salary of $158,220.

11. The next step is to find the details of such employee in the corresponding “employee”
table. To do so, run a SELECT query with a WHERE clause to display the record for
the employee with ID 43624:

MariaDB [employees]= SELECT * FROM employees WHERE emp_no=43624;
+ + + +

e B e e e e e +
| emp_no | birth_date | first_name | last_name | gender | hire_date |
SRS S SR R it S LR RS ns SRS L SR +
| 43624 | 1953-11-14 | Tokuyasu | Pesch | M | 1985-03-26

R B B B B e +

1 row in set (0.00 sec)

MariaDB [employees]= |}

To combine data from multiple tables, you can use a SQL join clause, rather than
on the the step-by-step procedure illustrated in Exercise 17-4. As an example, the final
Qob yesultinExercise 17-4 can be retrieved with a single query:
SELECT * FROM employees NATURAL JOIN salaries ORDER BY salary DESC LIMIT 1;
However, this is beyond the scope of the RHCE exam.

CERTIFICATION OBJECTIVE 17.04

Secure MariaDB

In a default installation, MariaDB accepts connections from any system on the network.
Access is granted to the root user without a password.

Clearly, this is not a secure configuration. In a previous section, we explained how to
secure a MariaDB installation with the mysql_secure_installation script. However, there’s
more to do to set up a secure installation.

Secure MariaDB 827

You may have applications that need to connect to MariaDB. For example, a web service
may need access. While you can support remote access by some systems, you should ensure
that access is prohibited to all other hosts. MariaDB provides a flexible permission scheme
that allows you to specify all the types of commands a user can run on the system.

Host-Based Security

You should start by prohibiting remote access to MariaDB, if possible. Alternatively, you can
limit access only to the systems that should be entitled to connect to it. There are two key
directives available to this regard in /etc/my.cnf:

B skip-networking Prevents MariaDB from listening on any TCP connection. This
does not limit access from the local system via Unix sockets.

B bind-address Allows MariaDB to listen to a specific IP address. If you set this
directive to 0.0.0.0, MariaDB listens for connections on all local IPv4 addresses. This
is the default setting. If you set it to ::, MariaDB listens for traffic on all IPv4 and
IPv6 addresses. On systems with multiple interfaces and IP addresses, you may want
MariaDB to listen on one specific IP address only.

Of course, you can also use firewall-cmd to restrict access to MariaDB. The following
example sets a firewall rich rule that allows connections only from the host with IP address
192.168.122.1:

firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source
address=192.168.122.1 service name=mysqgl accept'
firewall-cmd --reload

If you need to enable remote access to MariaDB for all hosts, run the following:

firewall-cmd --permanent --add-service=mysqgl
firewall-cmd --reload

User-Based Security

Access to MariaDB is maintained via an internal user database and privileges known as “grants”
From the MariaDB mysql client, the default username is the username you are logged

on with. So, if you are logged on the server as root, this is the default username. You can

connect as a specific user with the -u command switch. You can pass -p to ask the MariaDB

client to prompt you for a password, and -P to pass a custom TCP port. The last argument,

which is optional, specifies a database name to connect to.

828 Chapter 17 The MariaDB Server

For example, to connect to the myapp database on server 192.168.122.1 on port 3307
with username myuser and password changeme, run this command:

mysgl -u myuser -pchangeme -P 3307 -h 192.168.122.1 myapp

Note that there must be no space between the -p switch and the password.

Managing MariaDB Users

MariaDB uses the internal mysql database to manage users and permissions. To list the
current users, run these SQL statements:

MariaDB [(none)]> USE mysql;
MariaDB [mysgl]> SELECT user, host from mysqgl.user;

You can create a new user with the CREATE USER command. The syntax is illustrated
in the following example:

CREATE USER appuser@'192.168.122.1' IDENTIFIED BY 'changeme';

This SQL command creates a user named “appuser” that can connect only from the host
with IP address 192.168.122.1, with the password “changeme.” New users are not assigned any
privileges, so you must specifically assign the permissions that a user should be entitled to.

Managing User Privileges

Each user can be assigned a list of permissions (“grants”) that you can display with the SQL

command SHOW GRANTS [FOR username]. A sample output is shown in Figure 17-6.
Focus on the first line of the output. This tells us that the root user connecting from the

localhost is granted ALL PRIVILEGES, on all databases and all tables (*.*), with an additional

permission known as GRANT OPTION that allows that user to create new users and assign

them grant privileges.

FIGURE 17-6 s 5SS S S ;

Default grants | GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
for the MariaDB | GRANT PROXY ON ''@'' TO 'root'@'localhost' WITH GRANT OPTION |

root user

2 rows in set (0.00 sec)

MariaDB [(norne)l= 1

Secure MariaDB 829

Datch
If you need more the grants of the currently connected user,
information about the syntax of a GRANT which you can use as a template to modify
statement, run SHOW GRANTS. It displays the grants of other user accounts.

A list of the most common privileges is shown in Table 17-7.

Each GRANT statement is applied either globally (*.*), to a given database (db_name.*),
or to a given table (db_name.table_name). GRANT statements add more privileges; to
revoke a privilege, use the REVOKE command.

To put this into practice, we will create a user named “appowner” that can log in to
MariaDB from any host ('%'), with full privileges on the myapp database and “password123”
as a password:

MariaDB [(none)]> CREATE USER appowner@'$' IDENTIFIED BY 'passwordl23';
MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp.* TO appowner@'s$';

The previous commands can be merged into a single GRANT command. In other words,
the next statement has the same effect as the previous ones:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp.* TO appowner@'$'
-> IDENTIFIED BY 'passwordl23';

TABLE 17-7 Grant Privileges

Grant Privilege Description

ALL PRIVILEGES Grants all privileges, with the exception of GRANT OPTION.

WITH GRANT OPTION Allows for creating a new user and assigning permissions up to the level of
the current user.

CREATE Gives the permission to create new databases and tables.
DROP Allows for deleting databases and tables.

ALTER Used to modify a table, such as to add or remove columns.
DELETE Use the SQL DELETE statement to delete rows from a table.
INSERT Use the SQL INSERT statement to create rows in a table.
SELECT Use the SQL SELECT statement to retrieve data from a table.

UPDATE Use the SQL UPDATE statement to modify rows in a table.

830 Chapter 17 The MariaDB Server

If you want a user to be able to log in to MariaDB from the localhost via both TCP and
Unix socket connections, you should run the GRANT command twice and specify the host
as 127.0.0.1 and localhost. An example of this syntax is provided in Exercise 17-5.

MariaDB stores privileges internally in a database called “mysql” When you make
changes to user permissions, these are reflected in a database table. However, MariaDB does
not implement these changes until you “flush” these privileges (or restart the service). At the
MariaDB prompt, the required command is FLUSH PRIVILEGES:

MariaDB [(none)]> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)

Next, you can verify that the new user account
works by connecting to the mysql client and
listing the current user’s grants.

Datch

Don’t forget to run FLUSH Deleting MariaDB Users
PRIVILEGES after modifying a user’s grants. To delete a MariaDB user, run the DROP USER
statement. An example is shown here:

MariaDB [(none)]> DROP USER appowner;

This command has an immediate effect and does not require you to flush the user’s
privileges.

EXERCISE 17-5

Practice MariaDB User’s Permissions

In this exercise, we assume that you have completed Exercise 17-3 and created a “myapp”
database. You will create two MariaDB users:

B apprw This user is identified by the password “pass123” and has read, write,
update, and delete permissions to all the tables in the myapp database. The user can
log in from any host.

B appro This user is identified by the password “pass456” and has read permissions
to all the tables of the myapp database. The user can log in only from the localhost.

1. Connect to the MySQL client as root:
mysgl -u root -p
2. Create the apprw user with the following command:

MariaDB [(none)]> GRANT SELECT, INSERT, UPDATE, DELETE ON myapp.*
-> TO apprw@'%' IDENTIFIED BY 'passl23';

Database Backup and Recovery 831

3. Create the appro user:

MariaDB [(none)]> GRANT SELECT ON myapp.* TO appro@'l127.0.0.1' IDENTIFIED
-> BY 'pass456';
MariaDB [(none)]> GRANT SELECT ON myapp.* TO appro@'localhost';

4. Apply the new privileges:
MariaDB [(none)]> FLUSH PRIVILEGES;

5. Open a new terminal window and check that the new users can connect to MariaDB
using the mysql client. For example, to connect as the appro user, run the following:

mysgl -u appro -h localhost -ppass456 myapp
6. Run a simple SELECT query, such as the following:

MariaDB [myappl]> SELECT * from widgets;

Does this command work for the appro and apprw users?
7. Run an INSERT query:

MariaDB [myappl]> INSERT INTO widgets (name) VALUES ("test widget");

Does this command work for the appro and apprw users?
8. Exit the mysql client with the quit command.

CERTIFICATION OBJECTIVE 17.05

Database Backup and Recovery

MariaDB ships with the mysqldump backup program, which converts the entire contents of
one or more tables or databases into SQL statements that would be required to re-create them.
Data can also be exported by redirecting the result of a SELECT query into a file. This
can be done through the SELECT INTO OUTFILE statement, or by executing a query

from the mysql command and redirecting the output to a file.

Back Up and Restore with mysqldump

The mysqldump command outputs SQL statements to the standard output. To make that
output useful, you can redirect the output to a .sql file, or capture any errors that are sent

832 Chapter17 The MariaDB Server

FIGURE 17-7 [root@serverl ~]# cat /tmp/widgets.sql

- Table structure for table “widgets®

A backup
generated by DROP TABLE IF EXISTS “widgets®;
d CREATE TABLE ‘widgets’ (
mysqldump “id® int(11) NOT NULL AUTO_INCREMENT,

“name® varchar(255) DEFAULT NULL,
PRIMARY KEY [*id")
) ENGINE=InnoDE AUTO_INCREMENT=4 DEFAULT CHARSET=latinl;

-- Dumping data for table ‘widgets”®

LOCK TABLES “widgets™ WRITE;

INSERT INTO “widgets®™ VALUES (1, 'widget A'),(2,'widget B'),(3, 'widget C');
UNLOCK TABLES;

[root@serverl ~1# |

to stderr. For example, you can save the content of the widgets table created earlier with the
following command:

[root@serverl ~]# mysgldump -u appowner -p myapp widgets > /tmp/widgets.sqgl

If mysqldump returns any errors, make sure that the database and table exist, and that
the user has permissions to access the database and retrieve its contents.

Figure 17-7 shows the contents of the file generated by the previous command after
some of the comment lines have been removed.

The first command is a DROP TABLE IF EXISTS statement. This line removes the
widgets table only if it already exists to avoid any error messages if the table is not present.

Next, you will see a CREATE TABLE command, which should resemble the one from
Exercise 17-3.

The LOCK and UNLOCK statements that follow prevent other commands from
modifying the contents of the table while its contents are restored with the INSERT
command.

With a backup file generated by mysqldump, you can re-create every entry in your
database from this file. For example, if you want to import this backup into a database called
myapp_restored, take the following three steps:

1. Create a new database:
MariaDB [(none)]> CREATE DATABASE myapp restored;
2. Add a grant for the owner account:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON myapp restored.* TO
appowner@'s';

Database Backup and Recovery 833

3. Execute the contents of the dump file from the mysql client:

MariaDB [(none)]> USE myapp restored;
MariaDB [(none)]> SOURCE /tmp/widgets.sqgl

As an alternative, the last step can be executed from a Bash shell with the following
command:

cat /tmp/widgets.sgl | mysgl -u appowner -p myapp restored

So far, we have backed up and restored a single table. However, mysqldump can also
back up an entire database. For example, the following command creates a full backup of the
employee database:

mysgldump -u root -p employees > /tmp/employees.sqgl

If you want to back up all databases in your MariaDB system, substitute the --all-
databases flag for the database name:

mysgldump --all-databases -u root -p > /tmp/full-backup.sqgl

Back Up with a Dump of the Data to a Text File

If you have a large amount of data, you can create a dump of the data in a text file (for
example, to be imported by another application). There are two ways to create a file with
specific rows in it: using the SELECT INTO OUTFILE statement and the -e flag to the
mysql command.

SELECT INTO OUTFILE creates a file on the server that contains the requested table
rows. For example, the following command selects all the employee IDs and names and
saves the result in the /tmp/employees.data file:

MariaDB [employees]> SELECT emp no, first name, last name FROM employees
-> INTO OUTFILE '/tmp/employees.data';
Query OK, 300024 rows affected (0.12 sec)

As another option, you can use standard output redirection and the -e flag to the mysql
command:

mysgl employees -e "SELECT emp no, first name, last name \
FROM employees" > /tmp/employees.data

You should be aware that while the mysqldump command can back up and restore the
data and schema of a database, the commands illustrated in this section cannot back up
the schema. In addition, there isn’t a standard and easy procedure for restoring the data
generated by a SELECT INTO OUTFILE statement into a database or table.

834 Chapter 17 The MariaDB Server

CERTIFICATION SUMMARY

MariaDB is a very popular relational database management system, derived from and fully
compatible with MySQL. The mariadb-server RPM package installs the server components,
whereas the client and libraries are included with the mariadb and mariadb-libs packages.

The default configuration in RHEL 7 works “out of the box,” and no changes are required
to the /etc/my.cnf configuration file. However, at a minimum you should secure the
installation by running the mysql_secure_installation script.

Like in many other relational database management systems, a MariaDB database is
organized into different tables. Each table consists of columns of various data types and
rows (or records). The specification of the properties of all data in a database is known
as the schema. Databases and tables can be created with the CREATE DATABASE and
CREATE TABLE statements. Other SQL statements perform the most common “CRUD”
(create, read, update, delete) operations. These are INSERT, SELECT, DELETE, and
UPDATE.

MariaDB supports some host-based security directives in the /etc/my.cnf configuration
file, such as skip-networking to disable TCP connectivity, and bind-address, to listen for
connections on a specific IP address. Access to the server can also be restricted on the local
zone-based firewall.

User access is managed with the GRANT statement. This command can assign a specific
set of permissions to each user, either on a per-database or per-table basis. After modifying
user permissions, you must apply the changes with the FLUSH PRIVILEGES command.

The mysqldump command can perform a full backup of the contents and schema of a
single table, a database, or all the databases on a system. The backup can be saved into a file,
which can be passed to the mysql client as a script to restore the backup into MariaDB.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 17.

Introduction to MariaDB
U MariaDB is an RDBMS included in the base RHEL7 repositories. It is a community-
developed fork of MySQL released under the GPL license.

O The server package is provided by the mariadb-server RPM, whereas the client is in
the mariadb RPM.

U The main MariaDB configuration file is /etc/my.cnf.

U The port=num directive in /etc/my.cnf can be used to run the service on a different port.

Q

Two-Minute Drill 835

The mysql_secure_installation script can be used to secure a MariaDB server
installation by assigning a password to the MariaDB root user, disabling remote
logins, removing anonymous users, and deleting the default test database.

Database Management

a

Uoo0do

Databases store data in tables.
Tables are a sort of giant spreadsheet, with rows and columns containing data.
The schema defines how data is organized and structured into a database.

The CREATE DATABASE and CREATE TABLE SQL commands create a new
database and table, respectively.

Simple SQL Queries

a

a
a

Q

Data can be retrieved, inserted, edited, and modified with the SQL SELECT,
INSERT, UPDATE, and DELETE statements.

The WHERE clause filters the results or applies a condition to a SQL statement.

The ORDER BY clause sorts the records of a query in ascending or descending (with
the DESC keyword) order.

The LIMIT clause restricts the amount of records returned by a query.

Secure MariaDB

a

Q

a

Q

The skip-networking directive in /etc/my.cnf disables TCP connections to the
database and allows access only via Unix sockets.

The bind-address directive specifies the IP address that MariaDB should listen to
for connections.

MariaDB users can be assigned a list of permissions (“grants”) with the GRANT
command.

Permissions must be applied with the FLUSH PRIVILEGES command.

Database Backup and Recovery

a

Q

Backups of an entire database or specific tables can be taken with the mysqldump
command.

Databases can be restored from a SQL file (such as one created by mysqldump) by
redirecting its contents to the mysql command.

Data can be saved into a file with the SELECT INTO OUTFILE statement.

836 Chapter 17 The MariaDB Server

SELF TEST

The following questions will help measure your understanding of the material presented in this chapter.
As no multiple choice questions appear on the Red Hat exams, no multiple choice questions appear

in this book. These questions exclusively test your understanding of the chapter. It is okay if you have
another way of performing a task. Getting results, not memorizing trivia, is what counts on the Red Hat
exams. There may be more than one answer to many of these questions.

Introduction to MariaDB

1. Which RPM package provides the MariaDB server?

2. Which four actions are performed by the mysql_secure_installation script?

3. Which configuration directive runs MariaDB on TCP port 33066?

Database Management

4. What SQL command would you use to create a database named foo?

5. What SQL command would you use to create a table named person, containing two columns to
store the first and last name?

Simple SQL Queries

6. What SQL command would you run to print all the records in the table salaries, where the value
in the column salary is greater than or equal to 10,000?

Lab Questions 837

7. What SQL command would you run to insert the values 7 and “finance” in the column id and
department of the departments table?

8. What SQL command would you run to delete all the records in the employees table where the
last_name column is equal to “Smith”?

9. What SQL command would you run to change the value of the first_name column to “Adam” in
the employees table where the id column is equal to 5?

Secure MariaDB

10. To disable all TCP connections, what directive would you include in /etc/my.cnf?

11. What command would you use to set up a user named “redhat” with password “redhat”? Also,
give that user read-only access to a table named bar on the database foo, and grant access only
from the IP address 192.168.1.1.

12. How do you display what privileges you have as a user logged in to a MariaDB client?

Database Backup and Recovery

13. What is the command to back up the entire database foo to a text file /tmp/foo.sql?

LAB QUESTIONS

Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’'s assumed that you're running these exercises on virtual machines such as KVM. For this
chapter, it’s also assumed that you may be changing the configuration of a physical host system for such
virtual machines.

Red Hat presents its exams electronically. For that reason, the labs in this chapter are available in
the Chapter17/ subdirectory from the media that accompanies the book. In case you haven't yet set up
RHEL 7 on a system, refer to Chapter 1 for installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

838 Chapter 17 The MariaDB Server

SELF TEST ANSWERS

Introduction to MariaDB

1. The mariadb-server RPM package installs the MariaDB server.

2. The mysql_secure_installation script sets a password for the MariaDB root user, disables remote
logins, removes anonymous users, and deletes the default test database.

3. The directive port=33066 in /etc/my.cnf runs MariaDB on TCP port 33066. You would also need
to configure the local firewall and customize the default SELinux policy to allow MariaDB to
accept connections on that port.

Database Management

4. The following SQL command creates a database named foo:
CREATE DATABASE foo;
5. The following command creates a table named person, with two columns to store the first and last
name:

CREATE TABLE person (
first name VARCHAR (255),
last_name VARCHAR (255)

)i

Simple SQL Queries
6. The following SQL statement prints all the records in the table salaries, where the value in the
column salary is greater than or equal to 10,000:
SELECT * FROM salaries WHERE salary >=10000;
7. The following SQL statement adds a record with the values 7 and “finance” in the columns id and
department of the departments table:
INSERT INTO departments (id, department) VALUES (7, "finance");
8. The following SQL statement deletes all the records in the employees table where the last_name
column is equal to “Smith”:

DELETE FROM employees WHERE last name="Smith";

Lab Answers 839

9. The following SQL statement modifies the value of the first_name column to “Adam” in the
employees table where the id column is equal to 5:

UPDATE employees SET first name="Adam" WHERE id=5;

Secure MariaDB
10. To disable all remote TCP connections, add the skip-networking directive in the [mysqld]
section of /etc/my.cnf.

11. The following command sets up a user named “redhat” with password “redhat” and read-only
access to a table named bar on the database foo from the IP address 192.168.1.1:

GRANT SELECT ON foo.bar TO redhat@l92.168.1.1 IDENTIFIED BY 'redhat';

Don't forget to run FLUSH PRIVILEGES to make the change effective.
12. To list the privileges of the current user, run the SHOW GRANTS command.

Database Backup and Recovery

13. The following command backs up the entire database foo to a text file /tmp/foo.sql:

mysgldump -uuser -ppass foo > /tmp/foo.sqgl

LAB ANSWERS

Lab 1

This lab is a skill drill—practice it until you can do it without thinking. Install the mariadb-server
package, start and enable the MariaDB service, run mysql_secure_installation, and ensure that the
local firewall allows MySQL connections.

Then, connect as the MariaDB root user with the mysql client from the localhost, and run the fol-
lowing commands:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'letmein'«
WITH GRANT OPTION;
FLUSH PRIVILEGES;

To test, connect to the database server from a remote host:

mysgl -h 192.168.122.50 -uroot -pletmein

840

Lab 2

Chapter 17 The MariaDB Server

The first part of this lab was covered in Exercise 17-4.
To create the new user and assign the required permissions, execute the following SQL commands:

GRANT SELECT ON employees.departments TO labuser@'$%' IDENTIFIED BY«
'changeme' ;

GRANT SELECT ON employees.dept emp TO labuser@'%';

GRANT SELECT ON employees.dept manager TO labusere@'s%;

GRANT SELECT ON employees.employees TO labuser@'%';

GRANT SELECT ON employees.titles TO labuser@'$';

FLUSH PRIVILEGES;

Lab 3

The queries in question 4 of this lab can be solved using a single SQL join query. However, SQL join
clauses are beyond the scope of the Red Hat exam. Hence, we have provided the answers using simple
SELECT statements.

To explore the structure of the employees database, use the SHOW TABLES and DESCRIBE
table name commands.

1.

Execute the following query to retrieve all employees born on the 31st of October 1963:

SELECT * FROM employees WHERE birth date='1963-10-31"';

This query should return 61 records.

The second question is similar to the previous, but requires a second condition in the WHERE
clause:

SELECT * FROM employees WHERE birth date='1963-10-20' AND gender='F';

The query should return 25 records.

To find the youngest employee, retrieve all the first few records from the employee table, sorted
by birth data in descending order:

SELECT * FROM employees ORDER BY birth date DESC LIMIT 5;

The youngest employees were born on the 1st of February 1965.

This question requires multiple queries to be answered. First, find the relevant record for Eran
Fiebach in the employee table:

SELECT * FROM employees WHERE first_name="Eran" AND last_name="Fiebach";

This query should return the employee number of 50714 for Eran Fiebach. Next, retrieve the job title
using this information:

SELECT * FROM titles WHERE emp no='50714"';

Lab Answers 841

The job title returned by the query is Technique Leader. The last step is to find the salary informa-
tion for this employee number:

SELECT * FROM salaries WHERE emp _no='50714";

This query should return 14 salaries for Eran Fiebach. You should find that her starting salary was
$40,000, while the current salary is $57,744.

Lab 4

As discussed in the answers to Lab 3, you may need to study the structure of the database using the
SHOW TABLES and DESCRIBE table name commands.
Then, add a record for the new employee in the employees table:

INSERT INTO employees (emp_no, birth date, first name, last name, gender,
hire date) VALUES ('500000', '1990-06-09', 'Julia', 'Chan',6 'F',
'2015-06-01") ;

Then, add the job title:

INSERT INTO titles (emp no, title, from date, to date) VALUES ('500000',
'Senior Engineer', '2015-06-01', '9999-01-01"');

Note the special date 9999-01-01 to indicate that this is a current entry for the employee.
To assign the new employee to the Development department, we need the department code. The
following query tells us that this is d005:

SELECT * FROM departments;
With this information, we assign the employee to the Development department:

INSERT INTO dep emp (emp no, dept no, from date, to_date) VALUES ('500000',
'doos', '2015-06-01', '9999-01-01"');

The last step consists of adding the salary information:

INSERT INTO salaries (emp no, salary, from date, to date) VALUES ('500000',
'60000', '2015-06-01', '9999-01-01");

Lab 5
Create the backup with the following command:
mysgldump -p employees employees | gzip >> /root/emp.sqgl.gz

It is also perfectly acceptable to save the raw SQL file and then run gzip to compress the file. To
verify that the backup is valid, explore the contents of the file:

less /root/emp.sqgl.gz

842 Chapter 17 The MariaDB Server

Ensure that you have backed up only the contents of the employees table from the employees database.
To restore the backup, first create the new database:

CREATE DATABASE emp_restored;
Then import the contents of the backup:

gunzip /root/emp.sqgl.gz
cat emp.sqgl | mysqgl -p emp_ restored

As a final check, verify that the data looks the same by running the SQL query that you used to
answer part 1 of Lab 3.

	_GoBack

