
Chapter 4
RHCSA-Level
Security Options

4.01	 Basic File Permissions

4.02	 Access Control Lists and More

4.03	 Basic Firewall Control

4.04	 Securing SSH with Key-Based
Authentication

4.05	 A Security-Enhanced
Linux Primer

✓	 Two-Minute Drill

Q&A	 Self Test

CERTIFICATION OBJECTIVES

Linux security starts with a concept known as discretionary access control (DAC). This
includes the permissions and ownership associated with files and directories. With
specialized bits, including access control lists (ACLs), permissions can be more granular than

the simple user/group/other categories. These ACLs support permissions given to specific users or
groups, overriding standard permissions and allowing more fine-grained access rules for a given file
or directory.

176  Chapter 4  RHCSA-Level Security Options

Also in the realm of security is the firewall. In this chapter, you’ll examine both the
iptables service (which was the default firewall in RHEL 6) and the new firewalld daemon,
which provides support for different trust zones. You will learn how to allow or block
services through firewalld using the firewall-config graphical utility and the firewall-cmd
command tool.

A service that is installed on most Linux systems is SSH. As it is a very common service
for logging in to a machine, “black hat” hackers everywhere want to find a weakness in
SSH. So this chapter also describes how you can improve security by using key-based
authentication for SSH.

Further protection can be provided by a different kind of security known as mandatory
access control (MAC). The RHEL 7 MAC implementation is known as Security-Enhanced
Linux (SELinux). Red Hat expects you to work with SELinux enabled during exams. In this
chapter, you will examine how to set enforcing modes, change file contexts, use boolean
settings, and diagnose SELinux policy violations.

If you’re starting with the default installation created during the installation process,
you may need to install additional packages during this chapter. If a remote repository
is available, take the name of the package and apply the yum install command to it. For
example, to review the GUI-based firewall configuration tool, you’ll need to install it with
the following command:

yum install firewall-config

For more information on the package install process, see Chapter 7.

INSIDE THE EXAM

Basic File Permissions
Security in Linux starts with the permissions
given to files. As everything in Linux can be
defined as a file, it’s an excellent start. In any
case, the related objectives, once understood,
are fairly straightforward:

■■ List, set, and change standard ugo/rwx
permissions

■■ Diagnose and correct file permissions
problems

Standard permissions for Linux files are
defined for users, groups, and others, which
leads to the ugo. Those permissions are read,
write, and execute, which define the rwx.
Such permissions are defined as discretionary
access control, to contrast with the mandatory
access control system known as SELinux, also
discussed in this chapter.

Access Control Lists
ACLs can be configured to override and
extend basic file permissions. For example,

RHCSA-Level Security Options  177

with ACLs, you can set up a file in your home
directory that can be read by a limited number
of other users and groups. The related
RHCSA objective is

■■ Create and manage access control
lists (ACLs)

Firewall Control
As configured in Linux, a firewall can block
traffic on all but a few network ports. It also
can be used to regulate traffic in a number
of other ways, but that is the province of the
RHCE exam. The related RHCSA objective is

■■ Configure firewall settings using
firewall-config, firewall-cmd, or iptables

The Secure Shell Server
As suggested in the introduction, there’s a
special focus on the SSH service. The related
RHCSA objective is

■■ Configure key-based authentication
for SSH

With key-based authentication, you’ll be
able to log in to remote systems by using pri-
vate/public key pairs. Password transmission
over the network would no longer be required.
The 1024 or more bits associated with such
authentication are a lot harder to crack than a
password transmitted over a network.

Security-Enhanced Linux
There’s no way around it. On the Red Hat
exams, you’re expected to work with SELinux.

It’s not clear whether you can even pass the
Red Hat exams unless at least some services
are configured with SELinux in mind. To help
exam candidates understand what’s needed,
Red Hat has broken down SELinux-related
objectives. The first objective is fundamental
to SELinux, as it relates to the three modes
available for SELinux on a system (enforcing
/permissive/disabled):

■■ Set enforcing and permissive modes for
SELinux

The next objective requires that you under-
stand the SELinux contexts defined for different
files and processes. Although the associated
commands are straightforward, the available
contexts are as broad as the number of services
available on Linux:

■■ List and identify SELinux file and
process contexts

As you experiment with different SELinux
contexts, mistakes happen. You may not
remember the default contexts associated with
important directories. But with the right com-
mands, you don’t have to remember every-
thing; as suggested by the following objective,
it’s relatively easy to restore the default:

■■ Restore default file contexts

The next objective may seem complex. But
the boolean settings associated with SELinux
have descriptive names. Excellent tools are
available to further clarify the boolean con-
texts that are available. In essence, this means
that to run a certain service under SELinux,
all you need to do is turn on one or more

(Continued)

178  Chapter 4  RHCSA-Level Security Options

CERTIFICATION OBJECTIVE 4.01

Basic File Permissions
The basic security of a Linux computer is based on file permissions. Default file permissions
are set through the umask command. Special permissions can be configured to give all users
and/or groups additional privileges. These are known as the super user ID (SUID), super
group ID (SGID), and sticky permission bits. Ownership is based on the default user and
group IDs of the person who created a file. The management of permissions and ownership
involves commands such as chmod, chown, and chgrp. Before exploring these commands,
it’s important to understand the permissions and ownership associated with a file.

File Permissions and Ownership
Linux file permissions and ownership are straightforward. As suggested by the related

RHCSA objective, they’re read, write, and execute, classified by the user, the group, and
all other users. However, the effect of permissions on directories is more subtle. Table 4-1
shows the exact meaning of each permission bit.

boolean settings (rather than having to modify
the SELinux policy rules directly):

■■ Use boolean settings to modify system
SELinux settings

Once SELinux is operational, you
should monitor the system for policy vio-
lations. A violation may be the result of a

misconfiguration or an unauthorized intrusion
attempt. Hence, to get the most out of SELinux,
you should know how to audit for policy viola-
tions and be able to address common problems.
The related RHCSA objective is

■■ Diagnose and address routine SELinux
policy violations

Permission On a File On a Directory

read (r) Permission to read the file Permission to list the
contents of the directory

write (w) Permission to write (change)
the file

Permission to create and
remove files in a directory

execute (x) Permission to run the file as a
program

Permission to access the
files in the directory

	 TABLE 4-1	  

Permissions on
Files and
Directories

Basic File Permissions  179

Consider the following output from ls -l /sbin/fdisk:

-rwxr-xr-x. 1 root root 182424 Mar 28 2014 /sbin/fdisk

The permissions are shown on the left side of the listing. Ten characters are shown.
The first character determines whether it’s a regular or a special file. The remaining nine
characters are grouped in threes, applicable to the file owner (user), the group owner, and
everyone else on that Linux system. The letters are straightforward: r = read, w = write,
x = execute. These permissions are described in Table 4-2.

It’s common for the user and group owners of a file to have the same name. In this case,
the root user is a member of the root group. But they don’t have to have the same name.
For example, directories designed for collaboration between users may be owned by a
special group. As discussed in Chapter 8, that involves groups with several regular users as
members.

Keep in mind that permissions granted to the group take precedence over permissions
granted to all other users. Similarly, permissions granted to the owner take precedence over
all other permissions categories. Thus, in the following example, although everyone else
has full permissions to the file, the members of the group “mike” have not been granted any
permissions, and as such they won’t be able to read, modify, or execute the file:

$ ls -l setup.sh
-rwx---rwx. 1 root mike 127 Dec 13 07:21 setup.sh

There’s a relatively new element with permissions—and it’s subtle. Notice the dot after
the last x in the output to the ls -l setup.sh command? It specifies that the file has a SELinux
security context. If you’ve configured ACL permissions on a file, that dot is replaced by a
plus sign (+). But that symbol doesn’t override SELinux control.

You need to consider another type of permission: the special permission bits. Not only
are these the SUID and SGID bits, but also another special permission known as the sticky
bit. The effects of the special permission bits on files and directories are shown in Table 4-3.

An example of the SUID bit is associated with the passwd command in the /usr/bin
directory. The ls -l command on that file leads to the following output:

-rwsr-xr-x. 1 root root 27832 Jan 30 2014 /usr/bin/passwd

Position Description

1 Type of file; - = regular file, d = directory, b = device,
l = symbolic link

234 Permissions granted to the owner of the file
567 Permissions granted to the group owner of the file
890 Permissions granted to all other users on the Linux system

	 TABLE 4-2	  

Description of File
Permissions

180  Chapter 4  RHCSA-Level Security Options

The s in the execute bit for the user owner of the file is the SUID bit. It means the file
can be executed by other users with the authority of the file owner, the root administrative
user. But that doesn’t mean that any user can change other user’s passwords. Access to the
passwd command is further regulated by Pluggable Authentication Modules (PAM), as
described in Chapter 10. This is an RHCE skill. An example of the SGID bit can be found
with the ssh-agent command, also in the /usr/bin directory. It has the SGID bit to properly
store passphrases. The ls -l command on that file displays the following output:

---x--s--x. 1 root nobody 145312 Mar 19 2014 /usr/bin/ssh-agent

The s in the execute bit for the group owner of the file (group nobody) is the SGID bit.
Finally, an example of the sticky bit can be found in the permissions of the /tmp directory.

It means that users can copy their files to that directory, but no one else can remove those
files, apart from their respective owners (which is the “sticky”). The ls -ld command on that
directory shows the following output:

drwxrwxrwt. 22 root root 4096 Dec 15 17:15 /tmp

The t in the execute bit for other users is the sticky bit. Note that without the sticky bit,
everyone will be able to remove everyone else’s files in /tmp because write permissions have
been granted to all users on that directory.

The Loophole in Write Permissions
It’s easy to remove write permissions from a file. For example, if you wanted to make the
license.txt file “read-only,” the following command removes write permissions from that file:

$ chmod a-w license.txt

The user who owns the file can still make changes, however. It won’t work in GUI text
editors such as gedit. It won’t even work in the nano text editor. But if a change is made in

Special Permission On an Executable File On a Directory

SUID When the file is executed, the effective
user ID of the process is that of the file.

No effect.

SGID When the file is executed, the effective
group ID of the process is that of
the file.

Give files created in the directory the
same group ownership as that of the
directory.

Sticky bit No effect. Files in a directory can be renamed or
removed only by their owners.

	 TABLE 4-3	   Special Permission Bits

Basic File Permissions  181

the vi text editor, the user who owns that file can override a lack of write permissions with
the bang character, which looks like an exclamation point (!). In other words, while in the
vi editor, the user who owns the file can run the following command to override the lack of
write permissions:

w!

Although this may seem surprising, in practice the w! command of the vi editor is not
bypassing the Linux file permission system. The w! command overwrites a file—that is, it
deletes the existing file and creates a new one with the same name. As you can see from
Table 4-1, the permission bit that grants the privilege to create and delete files is the write
permission on the parent directory, not the write permission on the file itself. Hence, if a
user has write permission on a directory, she can overwrite the files in it, regardless of the
write permission bits set on files.

Commands to Change Permissions and Ownership
Key commands that can help you manage the permissions and ownership of a file are
chmod, chown, and chgrp. In the following subsections, you’ll examine how to use those
commands to change permissions along with the user and group that owns a specific file, or
even a series of files.

One tip that can help you change the permissions on a series of files is to use the -R
switch. It is the recursive switch for all three of these commands. In other words, if you
specify the -R switch with any of the noted commands on a directory, it applies the changes
recursively. The changes are applied to all files in that directory, including all subdirectories.
Recursion means that the changes are also applied to files in each subdirectory, and so on.

The chmod Command
The chmod command uses the numeric value of permissions associated with the owner,
group, and others. In Linux, permissions are assigned the following numeric values: r = 4,
w = 2, and x = 1. In numerical format, permissions are represented by an octal number,
where each digit is associated with a different group of permissions. For example, the
permission number 640 means that the owner is assigned permission 6 (read and write),
whereas the group has permission 4 (read), and everyone else has no permissions. The
chown and chgrp commands adjust the user and group owners associated with the cited file.

The chmod command is flexible. You don’t always have to use numbers. For example, the
following command sets execute permissions for the user owner of the Ch3Lab1 file:

chmod u+x Ch3Lab1

Note how the u and the x follow the ugo/rwx format specified in the associated RHCSA
objective. To interpret, this command adds (with the plus sign) for the user owner of the file
(with the u) execute permissions (with the x).

182  Chapter 4  RHCSA-Level Security Options

These symbols can be combined. For example, the following command disables (with the
minus sign) write permissions (with the w) for the group owner (with the g) and all other
users (with the o) on the local file named special:

chmod go-w special

Rather than adding or removing permissions with the + and − operators, you can set the
exact mode of a permission group using the equal operator (=). As an example, the following
command changes the group permissions of the file named special to read and write, and
clears the execute permission if it was set:

chmod g=rw special

While you can use all three group permission types in the chmod command, it’s not
necessary. As described in the labs in Chapter 3, the following command makes the noted
file executable by all users:

chmod +x Ch3Lab2

For the SUID, SGID, and sticky bits, some special options are available. If you choose to
use numeric bits, those special bits are assigned numeric values as well, where SUID = 4,
SGID = 2, and sticky bit = 1. For example, the following command configures the SUID bit
(with the first “4” digit in permission mode). It includes rwx permissions for the user owner
(with the “7”), rw permissions for the group owner (with the “6”), and r permission for other
users (with the last “4”) on the file named testfile:

chmod 4764 testfile

If you’d rather use the ugo/rwx format, the following command activates the SGID bit for
the local testscript file:

chmod g+s testscript

And the following command turns on the sticky bit for the /test directory:

chmod o+t /test

For the chmod command, changes don’t have to be made by the root administrative user.
The user owner of a file is allowed to change the permissions associated with her files.

The chown Command
The chown command can be used to modify the user who owns a file. For example, take
a look at the ownership for the first figure that we created for this chapter, based on the
ls -l command:

-rw-r--r--. 1 michael examprep 855502 Oct 25 14:07 F04-01.tif

Basic File Permissions  183

The user owner of this file is michael; the group owner of this file is examprep. The
following chown command changes the user owner to user elizabeth:

chown elizabeth F04-01.tif

You can do more with chown; for example, the following command changes both the
user and group owner of the noted file to user donna and group supervisors, assuming that
user and group already exists:

chown donna.supervisors F04-01.tif

Only the root administrative user can change the user owner of a file, whereas group
ownership can be modified by root and also by the user who owns the file.

The chgrp Command
You can change the group owner of a file with the chgrp command. For example, the
following command changes the group owner of the noted F04-01.tif file to the group
named project (assuming it exists):

chgrp project F04-01.tif

Special File Attributes
Just beyond regular rwx/ugo permissions are file attributes. Such attributes can help you
control what anyone can do with different files. Whereas the lsattr command lists current
file attributes, the chattr command can help you change those attributes. For example,
the following command protects /etc/fstab from accidental deletion, even by the root
administrative user:

chattr +i /etc/fstab

With that attribute, if you try to delete the file as the root administrative user, you’ll get
the following response:

rm /etc/fstab
rm: remove regular file '/etc/fstab'? y
rm: cannot remove '/etc/fstab': Operation not permitted

The lsattr command shows an active immutable attribute on /etc/fstab:

lsattr /etc/fstab
----i----------- /etc/fstab

Of course, the root administrative user can unset that attribute with the following
command. Nevertheless, the initial refusal to delete the file should at least give pause to that
administrator before changes are made:

chattr -i /etc/fstab

184  Chapter 4  RHCSA-Level Security Options

Several key attributes are described in Table 4-4. Other attributes, such as c (compressed),
s (secure deletion), and u (undeletable), don’t work for files stored in the ext4 and XFS
filesystems. The extent format attribute is associated with ext4 systems.

Basic User and Group Concepts
Linux, like Unix, is configured with users and groups. Everyone who uses Linux is set up
with a username, even if it’s just “guest.” There’s even a standard user named “nobody.” Take
a look at /etc/passwd. One version of this file is shown in Figure 4-1.

As shown, all kinds of usernames are listed in the /etc/passwd file. Even a number of
Linux services such as mail, news, ftp, and apache have their own usernames. In any case,

Attribute Description

append only (a) Prevents deletion, but allows appending to a file—for example,
if you’ve run chattr +a tester, cat /etc/fstab >> tester would
add the contents of /etc/fstab to the end of the tester file.
However, the command cat /etc/fstab > tester would fail.

no dump (d) Disallows backups of the configured file with the dump
command.

extent format (e) Set with the ext4 filesystem; an attribute that may not be
removed.

immutable (i) Prevents deletion or any other kind of change to a file.

	 TABLE 4-4	  

File Attributes

	 FIGURE 4-1	  

The /etc/passwd file

Basic File Permissions  185

the /etc/passwd file follows a specific format, described in more detail in Chapter 8. For
now, note that the only regular users shown in this file are alex and michael; their user IDs
(UID) and group IDs (GID) are, respectively, 1000 and 1001; and their home directories
match their usernames. The next user gets UID and GID 1002, and so on.

This matching of UIDs and GIDs is based on the Red Hat user private group scheme.
Now run the ls -l /home command. The output should be similar to the following:

drwx------. 4 alex alex 4096 Dec 15 16:12 alex
drwx------. 4 michael michael 4096 Dec 16 14:00 michael

Pay attention to the permissions. Based on the rwx/ugo concepts described earlier in this
chapter, only the named user owner has access to the files in his or her home directory.

The umask
The way umask works in Red Hat Enterprise Linux may be surprising, especially if you’re
coming from a different Unix-style environment. You cannot configure umask to allow
the automatic creation of new files with executable permissions. This promotes security: if
fewer files have executable permissions, fewer files are available for a “black hat” hacker to
use to run programs to break through your system.

Every time you create a new file, the default permissions are based on the value of umask.
When you type the umask command, the command returns a four-digit octal number such as
0002. If a bit of the umask is set, then the corresponding permission is disabled in newly created
files and directories. As an example, a umask of 0245 would cause newly created directories to
have 0532 octal permissions, which is equivalent to the following permission string

r-x-wx-w-.

In the past, the value of umask affected the value of all permissions on a file. For example,
if the value of umask was 000, the default permissions for any file created by that user were
once 777 – 000 = 777, which corresponds to read, write, and execute permissions for all
users. They’re now 666, since regular new files can no longer get executable permissions.
Directories, on the other hand, require executable permissions so that any file contained
therein can be accessed.

The Default umask
With that in mind, the default umask is driven by the /etc/profile and /etc/bashrc files,
specifically the following stanza, which drives a value for umask depending on the value of
the UID:

if [$UID -gt 199] && ["`id -gn`" = "`id -un`"]; then
 umask 002
else
 umask 022
fi

186  Chapter 4  RHCSA-Level Security Options

In other words, the umask for user accounts with UIDs of 200 and above is 002. In
contrast, the umask for UIDs below 200 is 022. In RHEL 7, service users such as adm,
postfix, and apache have lower UIDs; this affects primarily the permissions of the log files
created for such services. Of course, the root administrative user has the lowest UID of 0. By
default, files created for such users have 644 permissions; directories created for such users
have 755 permissions.

In contrast, regular users have a UID of 1000 and above. Files created by such users
normally have 664 permissions. Directories created by such users normally have 775
permissions. Users can override the default settings by appending an umask command in
their ~/.bashrc or ~/.bash_profile.

CERTIFICATION OBJECTIVE 4.02

Access Control Lists and More
There was a time when users had read access to the files of all other users. By default,
however, users have permissions only in their own directories. With ACLs, you can give
selected users read, write, and execute permissions to selected files in your home directory.
This provides a second level of discretionary access control, a method that supports
overriding of standard ugo/rwx permissions.

Strictly speaking, regular ugo/rwx permissions are the first level of discretionary access
control. In other words, ACLs start with the ownership and permissions described earlier in
this chapter. You’ll see how that’s displayed with ACL commands shortly.

To configure ACLs, you’ll need to mount the appropriate filesystem with the acl option.
Next, you’ll need to set up execute permissions on the associated directories. Only then can
you configure ACLs with desired permissions for appropriate users.

ACLs are supported on ext4 and XFS filesystems, as well as on the Network File System
(NFS) version 4.

The getfacl Command
Assuming the acl package is installed, you should have access to the getfacl command,
which displays the current ACLs of a file. For example, the following command displays the
current permissions and ACLs for the anaconda-ks.cfg file in the /root directory:

[root@server1 ~]# getfacl anaconda-ks.cfg
file: anaconda-ks.cfg
owner: root

Access Control Lists and More  187

group: root
user::rw-
group::---
other::---

Run the ls -l /root/anaconda-ks.cfg command. You should recognize every element of
the output shown here: as no ACLs are set in the anaconda-ks.cfg file, the getfacl command
displays only standard permissions and ownership. The ACLs that you’ll add shortly are
over and above the permissions shown here. But first, you may need to make a filesystem
friendly to that second level of ACLs.

Make a Filesystem ACL Friendly
RHEL 7 uses the XFS filesystem. When you create an XFS or an ext2/ext3/ext4 filesystem
on RHEL 7, ACLs are enabled by default. On the other hand, ext2, ext3, and ext4 filesystems
created on older versions of Red Hat may not automatically have ACL support enabled.

To verify whether an ext2/ext3/ext4 filesystem has the acl mount option enabled
by default on a partition device such as /dev/sda1, run the command tune2fs -l
/dev/sda1. Remember, XFS filesystems and all ext filesystems created on RHEL 7
have ACL support enabled by default. Hence, mounting a filesystem with the acl
option would be required only on ext filesystems created on older versions of
Red Hat Enterprise Linux or on ext2/ext3/ext4 filesystems where the acl option
has been explicitly removed.

If you want to enable ACL support on a filesystem that does not have the acl mount
option configured, you can remount the existing partition appropriately. For example, we
can remount the /home partition with ACL using the following command:

mount -o remount -o acl /home

To make sure this is the way /home is mounted on the next reboot, edit /etc/fstab. Based
on the previous command, the associated line might read as follows if /home is formatted
with ext4:

/dev/sda3 /home ext4 defaults,acl 1,2

Once the change is made to /etc/fstab, you can activate it with the following command:

mount -o remount /home

188  Chapter 4  RHCSA-Level Security Options

To confirm that the /home directory is mounted with the acl option, run the mount
command alone, without switches or options. You should see acl in the output, similar to
what’s shown here:

/dev/sda3 on /home type ext4 (rw,acl)

Now you can start working with ACL commands to set access control lists on desired
files and directories.

Manage ACLs on a File
Now with a properly mounted filesystem and appropriate permissions, you can manage
ACLs on a system. To review the current ACLs, run the getfacl filename command. For
this example, we’ve created a text file named TheAnswers in the /home/examprep directory.
The following is the output from the getfacl /home/examprep/TheAnswers command:

file home/examprep/TheAnswers
owner: examprep
group: proctors
user::rw-
group::r--
other::---

Note that the file TheAnswers is owned by user examprep and group proctors. That user
owner has read and write permissions; that group owner has read permissions to that file. In
other words, whereas the examprep user can read and change this file, user members of the
proctors group can read it.

Now if you were the examprep user or the root user on this system, you could assign ACLs
for the file named TheAnswers for me (user michael) with the setfacl command. For example,
the following command gives michael read, write, and execute permissions to that file:

setfacl -m u:michael:rwx /home/examprep/TheAnswers

This command modifies the ACLs for the noted file, modifying (-m) the ACLs for user
michael, giving that user read, write, and execute permissions to that file. To confirm, run
the getfacl command on that file, as shown in Figure 4-2.

	 FIGURE 4-2	  

The ACLs of a file

Access Control Lists and More  189

But when we tried to access that file from michael's user account, it didn't work.
Actually, if we try to access the file with the vi text editor, it suggests that /home/examprep/
TheAnswers is a new file. Then it refuses to save any changes we might make to that file.

Before files from the /home/examprep directory are accessible, the administrative
user will need to either change the permissions or the ACL settings associated with that
directory. Before we get to modifying discretionary access controls on a directory, let’s
explore some different setfacl command options.

Despite the name, the setfacl command can be used to remove such ACL privileges with
the -x switch. For example, the following command deletes the previously configured rwx
permissions for user michael:

setfacl -x u:michael /home/examprep/TheAnswers

In addition, the setfacl command can be used with groups; for example, if the teachers
group exists, the following command would give read privileges to users who are members
of that group:

setfacl -m g:teachers:r /home/examprep/TheAnswers

You can also use the setfacl command to remove all permissions from a named user. For
example, the following command denies access to the /home/examprep directory for the
user michael:

setfacl -m u:michael:- /home/examprep

If you want to see how ACLs work, don’t remove the ACL privileges on the TheAnswers
file, at least not yet. Alternatively, if you want to start over, the following command, with the
-b switch, removes all ACL entries on the noted file:

setfacl -b /home/examprep/TheAnswers

Some of the switches available for the setfacl command are shown in Table 4-5.

Switch Description

-b (--remove-all) Removes all ACL entries; retains standard ugo/rwx
permissions

-k Deletes default ACL entries
-m Modifies the ACL of a file, normally with a specific user (u) or

group (g)
-n (--mask) Omits the recalculation of the mask entry
-R Applies changes recursively
-x Removes a specific ACL entry

	 TABLE 4-5	  

Description of File
Permissions

190  Chapter 4  RHCSA-Level Security Options

One slightly dangerous option relates to other users. For example, the command

setfacl -m o:rwx /home/examprep/TheAnswers

allows other users read, write, and execute permissions for the TheAnswers file. It does so
by changing the primary permissions for the file, as shown in the output to the ls -l
/home/examprep/TheAnswers command. The -b and the -x switches don’t remove such
changes; you’d have to use the following command:

setfacl -m o:- /home/examprep/TheAnswers

Configure a Directory for ACLs
There are several ways to set up a directory for file sharing with ACLs. First, you could set
the regular execute bit for all other users. One way to do so on the noted directory is with
the following command:

chmod 701 /home/examprep

It is a minimal way to provide access to files in a directory. Users other than examprep
and root can’t list the files in that directory. They have to know that the file TheAnswers
actually exists to access that file.

However, with the execute bit set for other users, any user can access files in the
/home/examprep directory for which she has permission. That should raise a security flag.
Any user? Even though the file is hidden, do you ever want to give real privileges to anything
to all users? Sure, ACLs have been set for only the TheAnswers file in that /home/examprep
directory, but that’s one layer of security that you’ve taken down voluntarily.

The right approach is to apply the setfacl command to the /home/examprep directory.
The safest way to set up sharing is to set ACL execute permissions just for the user michael
account on the noted directory, with the following command:

setfacl -m u:michael:x /home/examprep

As the examprep user is the owner of the /home/examprep directory, that user can also
run the noted setfacl command.

Sometimes, you may want to apply such ACLs to all files in a directory. In that case, the
-R switch can be used to apply changes recursively; for example, the following command
allows user michael to have read and execute permissions on all files in the /home/examprep
directory as well as any subdirectories that may exist:

setfacl -R -m u:michael:rx /home/examprep

Access Control Lists and More  191

There are two methods available to unset these options. First, you could apply the -x
switch to the previous command, omitting the permission settings:

setfacl -R -x u:michael /home/examprep

Alternatively, you could use the -b switch; however, that would erase the ACLs configured
for all users on the noted directory (and with the -R switch, applicable subdirectories):

setfacl -R -b /home/examprep

Configure Default ACLs
Directories can also contain one or more default ACLs. The concept of a default ACL is
similar to a regular ACL entry, with the difference that a default ACL does not have any
effect on the current directory permissions, but it is inherited by the files created within
the directory.

As an example, if you want all new files and directories in /home/examprep to inherit
an ACL that grants read and execute permissions to the user michael, you can run the
following command:

setfacl -d -m u:michael:rx /home/examprep

The -d option in the preceding command specifies that the current operation applies to
a default ACL. The getfacl command can display standard and default ACLs on the noted
directory:

getfacl /home/examprep
getfacl: Removing leading '/' from absolute path names
file: home/examprep
owner: examprep
group: examprep
user::rwx
user:michael:--x
group::---
mask::--x
other::---
default:user::rwx
default:user:michael:r-x
default:group::---
default:mask::r-x
default:other::---

192  Chapter 4  RHCSA-Level Security Options

ACLs and Masks
The mask associated with an ACL limits the permissions available on a file for named
users and groups, and for the group owner. The mask shown in Figure 4-2 is rwx, which
means there are no limits. If it were set to r, then the only permissions that could be granted
with a command such as setfacl is read. To change the mask on the TheAnswers file to read-
only, run the following command:

setfacl -m mask:r-- /home/examprep/TheAnswers

Now review the result with the getfacl /home/examprep/TheAnswers command. Pay
attention to the entry for a specific user. Based on the ACL privileges given to user michael
earlier, you’ll see a difference with Figure 4-2:

user:michael:rwx #effective:r--

In other words, with a mask of r--, you can try to provide other users with all the
privileges in the world. But all that can be set with that mask is read privileges.

The mask has an effect only on the group owner and on named users and groups.
It does not have any effect on the user owner of the file and on the “other”
permission group.

EXERCISE 4-1

Use ACLs to Deny a User
In this exercise, you’ll set up ACLs to deny access to the loopback configuration file to a
regular user. That is the ifcfg-lo file in the /etc/sysconfig/network-scripts directory. This
exercise assumes that you’ve configured a regular user. Because we’ve configured user
michael on our systems, that is the regular user listed in this exercise. Substitute accordingly.
To deny such access, take the following steps:

1.	 Back up a copy of the current configuration file for the loopback device. It’s the
ifcfg-lo file in the /etc/sysconfig/network-scripts directory. (Hint: use the cp and not
the mv command.)

2.	 Execute the setfacl -m u:michael:- /etc/sysconfig/network-scripts/ifcfg-lo
command.

3.	 Review the results. Run the getfacl command on both copies of the file, in the
/etc/sysconfig/network-scripts and backup directories. What are the differences?

Access Control Lists and More  193

4.	 Log in as the target user. From the root administrative account, one method to do so
is with the su - michael command.

5.	 Try to read the /etc/sysconfig/network-scripts/ifcfg-lo file in the vi text editor or
even with the cat command. What happens?

6.	 Repeat the preceding step with the file in the backup directory. What happens?
7.	 Now run the cp command from the backup of the ifcfg-lo file, and overwrite the

current version in the /etc/sysconfig/network-scripts file. (Don’t use the mv command
for this purpose.) You would need to return as the root user to do so.

8.	 Try the getfacl /etc/sysconfig/network-scripts/ifcfg-lo command again. Are you
surprised at the result?

9.	 There are two ways to restore the original ACL configuration for the ifcfg-lo file.
First, apply the setfacl -b command on the file. Did that work? Confirm with the
getfacl command. If any other related commands have been applied, it may or may
not have worked.

10.	 Another way to restore the original ACL of a file is to restore the backup by first
deleting the changed file in the /etc/sysconfig/network-scripts directory and then by
copying the file from the backup directory.

11.	 However, if you run Step 10, you may also need to restore the SELinux contexts of
the file with the following command:

restorecon -F /etc/sysconfig/network-scripts/ifcfg-lo

More information on the restorecon command is available later in this chapter.

NFS Shares and ACLs
Although there’s no evidence that the Red Hat exams cover NFS-based ACLs, it is a feature
that Linux administrators should know. As such, the description in this section just provides
examples and is far from complete. For more information, refer to the nfs4_acl man page,
which is installed by the nfs4-acl-tools RPM package.

Frequently, the /home directory is taken from a shared NFS volume. In fact, NFS-based
ACLs are more fine-grained than standard ACLs. This feature was introduced with NFS
version 4, the standard for RHEL 7. To that end, the nfs4_getfacl command can display
the ACLs associated with files on a shared directory. Based on the ACLs previously given,
Figure 4-3 shows the output to the nfs4_getfacl command.

The output is in the format

type:flags:principal:permissions

194  Chapter 4  RHCSA-Level Security Options

where the settings are delineated by the colon. Briefly, the two types shown either allow
(A) or deny (D) the noted principal (a user or group) the specified permissions. No flags are
shown in Figure 4-3, which can provide relatively fine-grained control. The principal may be
a regular user or group, in lowercase. It may also be a generic user such as the file OWNER,
the GROUP that owns the file, or other users, as specified by EVERYONE. The permissions,
as shown in Table 4-6, allow very fine-grained control. The effect varies depending on
whether the object is a file or a directory.

The configuration of NFS as a client is covered in Chapter 6, with other local and
network filesystems. The configuration of an NFS server is an RHCE objective covered in
Chapter 16.

Permission Description

r Read file or list directory
w Write to a file or create a new file in a directory
a Append data to a file or create a subdirectory
x Execute a program or change a directory
d Delete the file or directory
D Delete the subdirectory
t Read the attributes of the file or directory
T Write the attributes of the file or directory
c Read the ACLs of the file or directory
C Write the ACLs of the file or directory
y Allow clients to use synchronous I/O on the file or directory

	 TABLE 4-6	  

Descriptions
of NFSv4 ACL
Permissions

	 FIGURE 4-3	  

NFS version 4 ACLs

Basic Firewall Control  195

CERTIFICATION OBJECTIVE 4.03

Basic Firewall Control
Traditionally, firewalls were configured only between LANs and outside networks such
as the Internet. But as security threats increase, there’s an increasing need for firewalls on
every system. RHEL 7 includes firewalls in every default configuration.

The Linux kernel comes with a powerful framework, the Netfilter system, which enables
other kernel modules to offer functionalities such as packet filtering, network address
translation (NAT), and load balancing. The iptables command is the main tool that
interacts with the Netfilter system to provide packet filtering and NAT.

Before you send a message over an IP network, the message is broken down into smaller
units called packets. Administrative information, including the type of data, the source
address, and destination address, is added to each packet. The packets are reassembled
when they reach the destination computer. An iptables rule examines these administrative
fields in each packet to determine whether to allow the packet to pass.

RHEL 7 also includes
a firewall command for IPv6 networks,
ip6tables. The associated commands are

almost identical. Unlike iptables, the ip6tables
command is not listed in the Red Hat
objectives.

The iptables tool is the basic foundation that is used by other services to manage system
firewall rules. RHEL 7 comes with two such services: the new firewalld daemon and the
iptables service, which was included with the previous releases of Red Hat Enterprise Linux.
You can interact with firewalld using the graphical utility firewall-config or the command-
line client firewall-cmd.

The iptables and firewalld services both rely on the Netfilter system within the Linux kernel
to filter packets. However, whereas iptables is based on the concept of “chain of filter rules” to
block or forward traffic, firewalld is “zone-based,” as you will see in the next sections.

There are RHCSA and RHCE requirements related to firewall configuration and
management. For the RHCSA, you need to understand how to configure a firewall to either
block or allow network communication through one or more ports using iptables, firewall-
config, or firewall-cmd. For the RHCE, you need a more in-depth knowledge of firewalld
and its features, such as “rich rules, zones and custom rules, to implement packet filtering
and configure network address translation (NAT).”

196  Chapter 4  RHCSA-Level Security Options

Standard Ports
Linux communicates over a network, primarily using the TCP/IP protocol suite. Different
services use certain ports and protocols by default, as defined in the /etc/services file. It
may be useful to know some of these ports by heart, such as those described in Table 4-7.
Be aware, some of these ports may communicate using the Transmission Control Protocol
(TCP), the User Datagram Protocol (UDP), or even the Stream Control Transmission
Protocol (SCTP). For example, as noted in the following excerpts from the /etc/services file,
the FTP service has been assigned the TCP and UDP ports listed here:

ftp-data 20/tcp
ftp-data 20/udp
ftp 21/tcp
ftp 21/udp

However, you’ll see shortly that the Red Hat firewall configuration tools open only TCP
communications for FTP services, and the default vsFTP server configured in Chapter 1
works fine under such circumstances. This is because the default policy of the Internet
Assigned Number Authority (IANA) is to register port numbers for both TCP and UDP,
even if a service only supports the TCP protocol.

A Focus on iptables
The philosophy behind iptables is based on “chains.” These are sets of rules applied to each
network packet, chained together. Each rule does two things: it specifies the conditions a
packet must meet to match the rule, and it specifies the action if the packet matches.

Port Description

20, 21 FTP
22 Secure Shell (SSH)
23 Telnet
25 Simple Mail Transfer Protocol (SMTP); for example, Postfix, sendmail
53 Domain Name Service servers
80 Hypertext Transfer Protocol (HTTP)
88 Kerberos
110 Post Office Protocol, version 3 (POP3)
139 Network Basic Input/Output System (NetBIOS) session service
143 Internet Mail Access Protocol (IMAP)
443 HTTP, secure (HTTPS)

	 TABLE 4-7	  

Common TCP/IP
Ports

Basic Firewall Control  197

The iptables command uses the following basic format:

iptables -t tabletype <action_direction> <packet_pattern> -j <what_to_do>

Now let’s analyze this command, step by step. First is the -t tabletype switch. There are
two basic tabletype options for iptables:

■■ filter  Sets a rule for filtering packets.
■■ nat  Configures network address translation, also known as masquerading, which is

discussed later in Chapter 10.

The default is filter; if you don’t specify a -t tabletype, the iptables command assumes
that the command is applied as a packet filter rule.

Next is the <action_direction>. Four basic actions are associated with iptables rules:

■■ -A (--append)  Appends a rule to the end of a chain.
■■ -D (--delete)  Deletes a rule from a chain. Specify the rule by the number or the

packet pattern.
■■ -L (--list)  Lists the currently configured rules in the chain.
■■ -F (--flush)  Flushes all the rules in the current iptables chain.

If you’re appending to (-A) or deleting from (-D) a chain, you’ll want to apply it to
network data traveling in one of three directions:

■■ INPUT  All incoming packets are checked against the rules in this chain.
■■ OUTPUT  All outgoing packets are checked against the rules in this chain.
■■ FORWARD  All packets received from a computer and being sent to another

computer are checked against the rules in this chain. In other words, these are
packets that are routed through the local server.

Typically, each of these directions is the name of a chain.
Next, you need to configure a <packet_pattern>. All iptables firewalls check every

packet against this pattern. The simplest pattern is by IP address:

■■ -s ip_address  All packets are checked for a specific source IP address.
■■ -d ip_address  All packets are checked for a specific destination IP address.

Packet patterns can be more complex. In TCP/IP, packets are transported using the
TCP, UDP, or ICMP protocol. You can specify the protocol with the -p switch, followed by
the destination port (--dport). For example, the -p tcp --dport 80 extension affects users
outside your network who are trying to make an HTTP connection.

198  Chapter 4  RHCSA-Level Security Options

Once the iptables command finds a packet pattern match, it needs to know what to do
with that packet, which leads to the last part of the command, -j <what_to_do>. There are
three basic options:

■■ DROP  The packet is dropped. No message is sent to the requesting computer.
■■ REJECT  The packet is dropped. An error message is sent to the requesting

computer.
■■ ACCEPT  The packet is allowed to proceed as specified with the -A action:

INPUT, OUTPUT, or FORWARD.

Take a look at some examples of how you can use iptables commands to configure a
firewall. The first step is always to see what is currently configured, with the following
command:

iptables -L

If an iptables firewall is configured, it should return chain rules in at least three different
categories: INPUT, FORWARD, and OUTPUT.

Keep That Firewall in Operation
Linux firewalls such as firewalld and the iptables service are based on the iptables
command. To review current rules, run the iptables -L command. Suppose all you see is the
following blank list of rules:

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

This output means that the firewalld service may not be enabled. In RHEL 7, firewalld is
the default firewall service. Make sure that it is running:

systemctl status firewalld

If the service is not active, check that the iptables service is disabled, then start firewalld
and ensure that it is enabled at boot:

systemctl stop iptables
systemctl disable iptables
systemctl start firewalld
systemctl enable firewalld

Basic Firewall Control  199

Before moving to the configuration of firewalld, we will briefly review the iptables
service. Besides being a requirement for the RHCSA exam, a basic knowledge of the iptables
service will provide a better understanding of the more advanced functionalities that come
with firewalld.

The iptables Service
Whereas the iptables service was the default firewall running in RHEL 6, firewalld is the
default in RHEL 7. If you wish, you can disable firewalld in RHEL 7, and switch to the old
iptables service. To do so, run the following commands:

systemctl stop firewalld
systemctl disable firewalld
systemctl start iptables
systemctl enable iptables

Likewise, to switch back to firewalld, run the commands listed in the previous section.
After starting the iptables service, list the existing firewall rules with iptables -L. The output
on the default server1.example.com system is shown in Figure 4-4.

Six columns of information are shown in Figure 4-4, which correspond to various
iptables command options. The firewall shown is based on the following rules listed in
the /etc/sysconfig/iptables file. The first line in the file specifies that the rules to follow are
filtering rules. Alternative rules support network address translation (NAT) or mangling.

*filter

	 FIGURE 4-4	   Firewall rules for the iptables service

200  Chapter 4  RHCSA-Level Security Options

Next, network traffic that is directed to the local system, intended to be forwarded and
sent out, is normally accepted by default with the ACCEPT option. The [0:0] part shows the
byte and packet counts.

:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

The lines that follow are all applied to the iptables command. Every switch and option
listed in this file should be available on the associated man page.

The next line keeps current network communications going. The ESTABLISHED option
continues to accept incoming packets related to inbound network connections. The RELATED
option accepts packets for follow-on network connections, such as for FTP data transfers.

-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

The next line accepts packets associated with ICMP, most commonly related with the ping
command. When a packet is rejected, the associated message also uses the ICMP protocol.

-A INPUT -p icmp -j ACCEPT

The following line adds (-A) a rule to an INPUT chain, associated with the network
interface (-i) known as the loopback adapter (lo). Any data processed through that device
jumps (-j) to acceptance.

-A INPUT -i lo -j ACCEPT

The next line is the only one that directly accepts new regular network data, using
the TCP protocol, over all interfaces. It looks for a match (-m) for a NEW connection
state (--state NEW), for matching TCP packets, using the TCP protocol (-p tcp), sent
to a destination port (--dport) of 22, which corresponds to the SSH service. Network
packets that meet all of these criteria are accepted (-j ACCEPT). Once the connection is
established, the first regular rule described in this chapter continues to accept packets on
that established connection.

-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT

The last two rules reject all other packets, with an icmp-host-prohibited message sent
to the originating system:

-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited

The COMMIT ends the list of rules:

COMMIT

Basic Firewall Control  201

As this section is associated with the RHCSA exam, a more detailed discussion can be
found in Chapter 10. At this level, you need to know how to manage these firewalls with the
standard configuration tools provided.

The firewalld Service
You can automate the process of configuring a firewall. For that purpose, in RHEL 7
firewalld comes with both a console and a GUI configuration tool. Although the look and
feel of the two applications are different, you can use both tools to configure access to
trusted services. Before starting the firewalld configuration tool, review the steps in the earlier
section “Keep That Firewall in Operation” to ensure that firewalld is running and automatically
starts during the boot process.

The firewalld service offers the same functionalities of the iptables tool and more. One
of the new features of firewalld is zone-based firewalling. In a zone-based firewall, networks
and interfaces are grouped into zones, with each zone configured with a different level of
trust. The zones defined in firewalld are listed in Table 4-8, along with their default behavior
for outgoing and incoming connections.

A zone is made up of a group of source network addresses and interfaces, plus
the rules to process the packets that match those source addresses and network
interfaces.

Zone Outgoing Connections Incoming Connections

drop Allowed Dropped.
block Allowed Rejected with an icmp-host-prohibited message.
public Allowed DHCPv6 client and SSH are allowed.
external Allowed and masqueraded to

the IP address of the outgoing
network interface

SSH is allowed.

dmz Allowed SSH is allowed.
work Allowed DHCPv6 client, IPP and SSH are allowed.
home Allowed DHCPv6 client, multicast DNS, IPP, Samba

client, and SSH are allowed.
internal Allowed Same as the home zone.
trusted Allowed Allowed.

	 TABLE 4-8	   Zones in firewalld

202  Chapter 4  RHCSA-Level Security Options

The GUI firewall-config Tool
You can start the graphical firewalld configuration tool from a GUI-based command line
with the firewall-config command. Alternatively, in the GNOME Desktop Environment,
click Applications | Sundry | Firewall. The result is shown in Figure 4-5.

As shown in the figure, the main window includes different menus and tabs. In the
top-left area, there is a drop-down Configuration menu, where you can set the firewall to
Runtime or Permanent mode. If it’s set to Runtime, the changes applied by firewall-config
take effect immediately, but will not survive a server reboot. Alternatively, select Permanent
mode to make your changes survive a server reboot. At any time, you can click Options |
Reload Firewalld to make a new firewall configuration immediately effective.

You can only modify definitions of zones and services in Permanent mode.

The Zone tab includes all the zones previously listed in Table 4-8. When an incoming
packet hits the firewall, its source address is checked for a match with the network addresses
that belong to the existing zones. If no match is found, the incoming interface of the packet

	 FIGURE 4-5	   The graphical firewall-config tool

Basic Firewall Control  203

is checked to verify whether it belongs to a zone. Once a correspondence is found, the
packet is processed according to the rules of the zone it has been matched to.

In the main firewall-config window, the public zone is displayed in a bold font to
indicate that this zone is the default zone. The default zone has a special meaning: any
new network interface added to the system is automatically assigned to the default zone.
In addition, the rules of the default zone are processed for all incoming packets that do
not match any of the other zones. You can set a different zone to be the default by clicking
Options | Change Default Zone.

To allow or deny incoming traffic through the firewall, select a zone and add or remove
a checkmark in the zone’s Services tab for the service you want to grant or block. As an
alternative, you can also specify a protocol and port from the Ports tab.

In firewalld, a service is defined as a group of one of more protocols and ports. A service
can also include a Netfilter helper module to support filtering for those applications that
dynamically open multiple connections.

A variety of network services are already defined in the Services window. The most
common are described in Table 4-9.

Service Description

amanda-client A client of the Advanced Maryland Automatic Network Disk Archiver (AMANDA),
associated with UDP and TCP port 10080.

bacula An open-source network backup server; associated with TCP ports 9101, 9102,
and 9103.

bacula-client Client for the Bacula server; associated with TCP port 9102.
dhcp The Dynamic Host Configuration Protocol (DHCP) is associated with UDP port 67.
dhcpv6-client The DHCP client on IPv6 is associated with UDP port 546.
dns Domain Name Service (DNS) server; associated with port 53, using both TCP and

UDP protocols.
ftp File Transfer Protocol (FTP) server, associated with TCP port 21; a Netfilter helper

module tracks dynamic connections established for FTP data transfers.
http The well-known web server uses TCP port 80.
https Communications to a secure web server over the Secure Sockets Layer (SSL) uses

TCP port 443.
imaps IMAP over SSL normally uses TCP port 993.
ipsec Associated with UDP port 500 for the Internet Security Association and Key

Management Protocol (ISAKMP), along with the ESP and AH transport-level protocols.

	 TABLE 4-9	   Common TCP/IP Ports

(Continued)

204  Chapter 4  RHCSA-Level Security Options

If you switch the firewall-config tool into Permanent mode, you can add new services
or edit existing ones. To accomplish this task, scroll to the bottom of the Services window
and click the corresponding icon to remove, add, or edit a service. If desired, you can also
configure custom ports for an existing service by clicking the Add or Edit icon, as shown in
Figure 4-6.

The Console firewall-cmd Configuration Tool
The firewall-cmd configuration tool has the same features and services as the corresponding
GUI tool. In fact, both the graphical firewall-config tool and the command interface
firewall-cmd are just client front ends that communicate to the underlying firewalld daemon.

Service Description

mdns Multicast DNS (mDNS) is associated with UDP port 5353 and with the multicast
IP address 224.0.0.251; mDNS is often used to support the Linux implementation of
zero configuration networking (zeroconf), known as Avahi.

nfs NFS version 4 uses TCP port 2049.
ipp The standard network print server client uses TCP and UDP ports 631, based on the

Internet Print Protocol (IPP).
ipp-client The standard networking print client uses UDP port 631, based on the Internet Print

Protocol (IPP).
openvpn The open-source Virtual Private Network system, which uses UDP port 1194.
pop3s POP-3 over the Secure Sockets Layer (SSL) normally uses TCP port 995.
radius The Remote Authentication Dial-In User Service (RADIUS) protocol uses UDP

ports 1812 and 1813.
samba The Linux protocol for communication on Microsoft networks uses TCP ports 139

and 445, along with UDP ports 137 and 138.
samba-client The Linux protocol for client communication on Microsoft networks uses

UDP ports 137 and 138.
ssh The SSH server uses TCP port 22.
smtp The Simple Mail Transport Protocol server, such as sendmail or Postfix, uses

TCP port 25.
tftp Communications with the Trivial File Transfer Protocol (TFTP) server requires

UDP port 69.
tftp-client The TFTP client uses a dynamic port range to transfer data; a Netfilter helper

module tracks those connections.

	 TABLE 4-9	   Common TCP/IP Ports (Continued)

Basic Firewall Control  205

As with the GUI tool, firewall-cmd can display all the available zones and switch to a
different default zone. In the following example, the default zone is changed from the public
to the internal zone:

firewall-cmd --get-default-zone
public
firewall-cmd --set-default-zone=internal
success
firewall-cmd --get-default-zone
internal
#

The option --list-all is particularly useful. It lists all the configured interfaces and
services allowed through a zone, as illustrated next:

firewall-cmd --list-all
internal (default, active)
 interfaces: eth0
 sources:

	 FIGURE 4-6	   Adding custom ports to a service in the firewall-config tool

206  Chapter 4  RHCSA-Level Security Options

 services: dhcpv6-client ipp-client mdns samba-client ssh
 ports:
 masquerade: no
 forward-ports:
 icmp-blocks:
 rich rules:
#

As with many of the firewall-cmd command
options, the default zone is assumed if no zone
is specified with the --zone command switch.
You can add and remove ports and services
from a zone with the --add-port, --add-service,
--remove-port, and --remove-service
switches, respectively. The next example
enables the http service for traffic hitting the
dmz zone:

firewall-cmd --zone=dmz --add-service=http
success
#

By default, all configuration changes made by firewall-cmd do not survive a server
reboot. To make a change that survives a reboot, add the --permanent switch to firewall-
cmd. Then, run firewall-cmd --reload to implement the change immediately.

EXERCISE 4-2

Adjust Firewall Settings
In this exercise, you’ll adjust firewalls from the command-line interface and review the
results with the nmap and telnet commands. Although it does not matter how you
address a problem on a Red Hat exam, in this exercise you’ll see what happens when
adding a new service via the firewall-cmd tool. Of course, it’s possible to use the graphical
firewall-config tool to perform the same tasks. This assumes a system with the default
firewalld configuration described in this chapter.

1.	 Review current active services on the local system with the nmap localhost
command. Note the IP address of the local system with the ip addr command. If the
local system is server1.example.com, that IP address should be 192.168.122.50.

2.	 Make sure firewalld is currently operational with the systemctl status firewalld
command.

You want firewall
changes that survive after a reboot. To
do so with the firewall-cmd command, use
the --permanent switch.

Securing SSH with Key-Based Authentication  207

3.	 Go to a different system. You can do so from a different virtual machine, or you
can access it remotely with the ssh command. If the tester1.example.com system is
running, you can log in to that system with the ssh 192.168.122.150 command.

4.	 Use the nmap command to review what is seen through the firewall; for the noted
server1.example.com system, the right command would be nmap 192.168.122.50. If
the IP address found from Step 1 is different, substitute accordingly.

5.	 Return to the original system. Run the following commands to install and start the
telnet service:

yum install telnet-server
systemctl start telnet.socket

6.	 Run the following command to show the current settings for the default zone:

firewall-cmd --list-all

7.	 Allow telnet traffic through the default zone. Don’t forget the --permanent switch to
make the change persistent:

firewall-cmd --permanent --add-service=telnet

8.	 Apply the previous change to the run-time configuration of the firewall:

firewall-cmd --reload

9.	 Navigate back to the tester1.example.com system as was done in Step 3.
10.	 Repeat Step 4. What do you see?

CERTIFICATION OBJECTIVE 4.04

Securing SSH with Key-Based Authentication
Chapter 2 addressed SSH client programs, including ssh, scp, and sftp. The focus of this
section is on securing SSH access with key-based authentication.

As SSH is an important tool for administering systems remotely, it’s important to
understand the basics of how it encrypts communication between a client and the SSH
server. Then you’ll see how to create a public/private key pair so connections won’t even put
user passwords at risk. But first, it may be helpful to review some basic information about
SSH configuration commands and files.

208  Chapter 4  RHCSA-Level Security Options

SSH Configuration Commands
There are a few SSH-oriented utilities you need to know about:

■■ sshd  The daemon service; this must be running to receive inbound Secure Shell
client requests.

■■ ssh-agent  A program to hold private keys used for Digital Signature Algorithm
(DSA), Elliptic Curve DSA (ECDSA), and Rivest, Shamir, Adleman (RSA)
authentication. The idea is that the ssh-agent command is started in the beginning
of an X session or a login session, and other programs are started as clients to the
ssh-agent program.

■■ ssh-add  Adds private key identities to the authentication agent, ssh-agent.
■■ ssh  The Secure Shell command, ssh, is a secure way to log in to a remote machine,

similar to Telnet or rlogin. The basic use of this command was discussed in Chapter
2. To make this work with key-based authentication, you need a private key on the
client and a public key on the server. Take the public key file, such as id_rsa.pub,
created later in this section. Copy it to the server. Place it in the home directory of an
authorized user in the ~/.ssh/authorized_keys file.

■■ ssh-keygen  A utility that creates private/public key pairs for SSH authentication.
The ssh-keygen -t keytype command will create a key pair based on the DSA,
ECDSA, or RSA protocol.

■■ ssh-copy-id  A script that copies a public key to a target remote system.

SSH Client Configuration Files
Systems configured with SSH include configuration files in two different directories. For
the local system, basic SSH configuration files are stored in the /etc/ssh directory. But just as
important are the configuration files in each user’s home directory in the ~/.ssh/ subdirectory.

Those files configure how the given user is allowed to connect to remote systems. When
DSA, ECDSA, and RSA keys are included, the user ~/.ssh/ subdirectory includes the
following files:

■■ authorized_keys  Includes a list of public keys from remote users. Users with
public encryption keys in this file can connect to remote systems. The system users
and names are listed at the end of each public key copied to this file.

■■ id_dsa  Includes the local private key based on the DSA algorithm.
■■ id_dsa.pub  Includes the local public key for the user based on the DSA algorithm.
■■ id_ecdsa  Includes the local private key based on the ECDSA algorithm.

Securing SSH with Key-Based Authentication  209

■■ id_ecdsa.pub  Includes the local public key for the user based on the
ECDSA algorithm.

■■ id_rsa  Includes the local private key based on the RSA algorithm.
■■ id_rsa.pub  Includes the local public key for the user based on the RSA algorithm.
■■ known_hosts  Contains the public host keys from remote systems. The first time

a user logs in to a system, she’s prompted to accept the public key of the remote
server. On RHEL 7, the ECDSA protocol is used by default to encrypt traffic. The
corresponding public key on the remote server is stored on the /etc/ssh/ssh_host_
ecdsa_key.pub file and is added by the client to its local ~/.ssh/known_hosts file.

Basic Encrypted Communication
Basic encryption in computer networking normally requires a private key and a public
key. The principle is the same as GPG communications discussed in Chapter 10. A private
key is stored by the owner, and a public key is sent to a third party. When the key pair is
properly configured, a user can encrypt a message using her private key, while a third party
can decrypt a message with the corresponding public key. This also works in reverse: a
third party can encrypt a message using the public key of the receiver, while the receiver
can decrypt the message with her private key. The SSH protocol works in a similar way:
the server sends a copy of his public key to the client, and this key is used by the client to
decrypt the traffic and set up a secure communication channel.

Encryption keys are based on random numbers. The numbers are so large (typically 2048
bits for RSA keys or more) that the chance someone will break into the server system, at
least with a PC, is practically impossible. Private and public encryption keys are based on a
matched set of these random numbers.

Private Keys
The private key must be secure. Key-based authentication relies on a private key that is
accessible only to the user owner of that key in the ~/.ssh subdirectory of that user’s home
directory. To authenticate a user, the server sends to the client a “challenge,” which is a
request to perform an encryption operation that requires the knowledge of the private key.
Once the server receives a response to its challenge from the client, it will be able to decrypt
the message and prove that the user’s identity is genuine.

Public Keys
The public key is just that, publicly available. Public keys are designed to be copied to
appropriate users’ ~/.ssh/ subdirectories in a file named authorized_keys.

The example shown in Figure 4-7 lists the directories and files associated with SSH usage.

210  Chapter 4  RHCSA-Level Security Options

Most of the common issues
with SSH key-based authentication are
related to file permissions. As shown in
Figure 4-7, the permissions for private keys

are set to 600 and for public keys are set
to 644. In addition, the permissions of the
~/.ssh directory should be 700.

A key is like a password used to encrypt communications data. But it’s not a standard
password by any means. Imagine trying to remember the 1024-bit number expressed in
hexadecimal format shown here:

3081 8902 8181 00D4 596E 01DE A012 3CAD 51B7
7835 05A4 DEFC C70B 4382 A733 5D62 A51B B9D6
29EA 860B EC2B 7AB8 2E96 3A4C 71A2 D087 11D0
E149 4DD5 1E20 8382 FA58 C7DA D9B0 3865 FF6E
88C7 B672 51F5 5094 3B35 D8AA BC68 BBEB BFE3
9063 AE75 8B57 09F9 DCF8 FFA4 E32C A17F 82E9
7A4C 0E10 E62D 8A97 0845 007B 169A 0676 E7CF
5713

The private key is similar, but you must keep it private, or this whole system fails. Keeping
it private means no one should have access to the server systems. If your PC is public, secure
your private key with a passphrase (password). The procedure to set up a passphrase is
described next. Don’t forget the passphrase, or you’ll have to create a new key pair and again
copy your public key to all the target systems.

Set Up a Private/Public Pair for Key-Based Authentication
The ssh-keygen command is used to set up a public/private key pair. Although it creates an
RSA key by default, it also can be used to create a DSA or ECDSA key. For example, some
users may need DSA keys to comply with certain U.S. government standards. An example
of the command sequence is shown in Figure 4-8.

	 FIGURE 4-7	  

Keys in a user’s
.ssh/ subdirectory

Securing SSH with Key-Based Authentication  211

As shown in the figure, the command prompts for an optional passphrase to protect the
private key. When the identical passphrase is confirmed, the private key is saved in the
id_rsa file, and the corresponding public key is stored in the id_rsa.pub file. Both files for
user michael are stored in the /home/michael/.ssh directory.

If desired, you can set up RSA keys with a larger number of bits. In our testing, we were
able to set up key pairs with up to 8192 bits fairly quickly, even on a virtual machine system
with just one virtual CPU.

The command that starts the process is

$ ssh-keygen -b 8192

Alternatively, if a DSA key is needed, the following command can help. Only 1024-bit
DSA keys are allowed. The process after this command is the same as shown in Figure 4-8.

$ ssh-keygen -t dsa

The next step is to transmit the public key to a remote system. It might be one of the
servers you administer. If you’re willing to transmit that public key over the network
(once per connection), the following command can work:

$ ssh-copy-id -i .ssh/id_rsa.pub michael@tester1.example.com

Strictly speaking, the ssh-copy-id command without the -i option defaults to
transmitting the most recently created public key. The preceding command automatically
appends the noted local RSA key to the end of the remote ~/.ssh/authorized_keys file. In
this case, that file can be found in the /home/michael directory. Of course, you may choose
to substitute the IP address for the hostname.

	 FIGURE 4-8	  

Command to
generate an SSH
key pair

212  Chapter 4  RHCSA-Level Security Options

Sometimes, after copying
a key pair to a remote system, you may get
an “agent admitted failure to sign using the
key” error followed by a password prompt

when you try to log in. To fix this problem,
log out of the console or the GUI and log
back in. In most cases, the ssh command will
prompt for the passphrase.

You should then be able to immediately connect to that remote system. In the preceding
case, the appropriate command is either one of the following:

$ ssh -l michael tester1.example.com
$ ssh michael@tester1.example.com

When run on a console, the ssh command uses the following prompt for the passphrase:

Enter passphrase for key '/home/michael/.ssh/id_rsa'

When run in a GUI-based command line, it prompts with a window similar to that
shown in Figure 4-9.

	 FIGURE 4-9	  

Prompt for a
passphrase

A Security-Enhanced Linux Primer  213

CERTIFICATION OBJECTIVE 4.05

A Security-Enhanced Linux Primer
Security-Enhanced Linux (SELinux) was developed by the U.S. National Security Agency
to provide a level of mandatory access control for Linux. It goes beyond the discretionary
access control associated with file permissions and ACLs. In essence, SELinux enforces
security rules within the kernel of the operating system. It limits the damage if there
is a security breach. For example, if the system account associated with an FTP service
is compromised, SELinux makes it more difficult to use that account to compromise
other services.

Basic Features of SELinux
The SELinux security model is based on subjects, objects, and actions. A subject is a
process, such as a running command or an application such as the Apache web server
in operation. An object is a file, a device, a socket, or in general any resource that can be
accessed by a subject. An action is what may be done by the subject to the object.

SELinux assigns different contexts to objects. A context is just a label, which is used by
the SELinux security policy to determine whether a subject’s action on an object is allowed
or not.

For example, the Apache web server process can take objects such as web page files
and display them for the clients of the world to see. That action is normally allowed in the
RHEL 7 implementation of SELinux, as long as the object files have appropriate SELinux
contexts.

The contexts associated with SELinux are fine-grained. In other words, if a “black hat”
hacker breaks in and takes over your web server, SELinux contexts prevent that cracker
from using that breach to break into other services.

To see the context of a particular file, run the ls -Z command. As an example, review
what this command does in Figure 4-10, as it displays security contexts in one of this book
author’s /root directory.

As noted at the beginning of this chapter, five objectives relate to SELinux on the RHCSA
exam. You’ll explore how to meet these objectives in the following sections.

SELinux Status
As suggested in the RHCSA objectives, you need to know how to “set enforcing and
permissive modes for SELinux.” There are three available modes for SELinux: enforcing,
permissive, and disabled. The enforcing and disabled modes are self-explanatory.

214  Chapter 4  RHCSA-Level Security Options

SELinux in permissive mode means that any SELinux rules that are violated are logged, but
the violation does not stop any action.

If you want to change the default SELinux mode, change the SELINUX directive in the
/etc/selinux/config file, as illustrated in Table 4-10. The next time you reboot, the changes
are applied to the system.

In RHEL 6, the SELINUX configuration variable was defined in the /etc/sysconfig
/selinux file. In RHEL 7, /etc/sysconfig/selinux is a symbolic link that points to
/etc/selinux/config.

If SELinux is configured in enforcing mode, it protects systems in one of two ways: in
targeted mode or in mls mode. The default is the targeted policy, which allows you to
customize what is protected by SELinux in a fine-grained manner. In contrast, MLS goes a
step further, using the Bell-La Padula model developed for the US Department of Defense.
That model, as suggested in the /etc/selinux/targeted/setrans.conf file, supports layers of
security between levels c0 and c3. Although the c3 level is listed as “Top Secret,” the range of
available levels goes all the way up to c1023. Such fine-grained levels of secrecy have yet to
be fully developed. If you want to explore MLS, install the selinux-policy-mls RPM.

	 FIGURE 4-10	   SELinux security contexts of different files

A Security-Enhanced Linux Primer  215

If you just want to experiment with SELinux, configure it in permissive mode. It’ll
log any violations without stopping anything. It’s easy to set up with the SELinux
Administration tool, or you can set SELINUX=permissive in /etc/selinux/config. If
the auditd service is running, violations are logged in the audit.log file in the
/var/log/audit directory. Just remember, it’s likely that Red Hat wants candidates
to configure SELinux in enforcing mode during the exams.

SELinux Configuration at the Command Line
While SELinux is still under active development, it has become much more useful with
the releases of RHEL 6 and RHEL 7. Nevertheless, given the complexity associated with
SELinux, it may be more efficient for system engineers who are not very familiar with it to
use the SELinux Administration tool to configure SELinux settings.

The following sections show how you can configure and manage SELinux from the
command-line interface. However, because it’s easier to demonstrate the full capabilities of
SELinux using GUI tools, a detailed discussion of such capabilities will follow later in this
chapter.

Configure Basic SELinux Settings
There are some essential commands that can be used to review and configure basic SELinux
settings. To see the current status of SELinux, run the getenforce command; it returns
one of three self-explanatory options: enforcing, permissive, or disabled. The sestatus
command provides more information, with output similar to the following.

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

Directive Description

SELINUX Basic SELinux status; may be set to enforcing, permissive,
or disabled.

SELINUXTYPE Specifies the level of protection; set to targeted by default,
where protection is limited to selected “targeted” services.
The alternative is mls, which is associated with multi level
security (MLS).

	 TABLE 4-10	  

Standard
Directives in
/etc/selinux/config

216  Chapter 4  RHCSA-Level Security Options

You can change the current SELinux status with the setenforce command; the options
are straightforward:

setenforce enforcing
setenforce permissive

This changes the /sys/fs/selinux/enforce boolean. For booleans, you could substitute 1
and 0, respectively, for enforcing and permissive. To make this change permanent, you’ll
have to modify the SELINUX variable in the /etc/selinux/config file. However, changes to
detailed SELinux booleans require different commands.

Alternatively, if SELinux is disabled for some reason, the output would be

SELinux status: disabled

If SELinux is disabled, it may
take a few minutes to reboot a system after
setting SELinux in enforcing mode. However,

the process is less time-consuming than it
was for the previous RHEL releases.

In that case, the setenforce command will not work. Instead, you’ll have to set
SELINUX=enforcing in the /etc/selinux/config file. And that requires a system reboot to
"relabel" all files, where SELinux labels are applied to each file on the local system.

Configure Regular Users for SELinux
To review the status of current SELinux users, run the semanage login -l command. Based
on the default installation of RHEL 7, it leads to the following output:

Login Name SELinux User MLS/MCS Range Service
__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

In other words, regular “default” users have the same SELinux user context of the
root administrative user. To confirm, run the id -Z command as a regular user. Without
changes, it leads to the following output, which suggests that the user is not confined by any
SELinux settings:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

A Security-Enhanced Linux Primer  217

The preceding string defines what is called a label in SELinux jargon. A label is made up
of several context strings, separated by a column: a user context (which ends with a _u), a
role context (which ends with _r), a type context (which ends with _t), a sensitivity context,
and a category set. The rules of the targeted policy, which is the default SELinux policy in
RHEL 7, are mostly associated with the type (_t) context.

Although it may not be an exam requirement, regular users should be confined by
SELinux. When user accounts are compromised, and they will be compromised, you want
any damage that might be caused limited by SELinux rules. The following example specifies
a confinement rule that adds (-a) regular user michael, specifying (-s) the user_u context for
confinement:

semanage login -a -s user_u michael

The user_u role should not have the ability to run the su and sudo commands described
in Chapter 8. If desired, you can reverse the process with the semanage -d michael
command. Since user roles are still a work in progress, you should focus on the available
user contexts listed in the latest Red Hat documentation, as shown in Table 4-11.

One other commonly seen “user” context is system_u, which typically does not apply to
regular users. It is a common user seen in the output to the ls -Z command for system and
configuration files.

When a user role is changed, it doesn’t take effect until the next login. For example, if
we were to change the role for user michael to user_u in a GUI-based command line, the
change would not take effect until we logged out and logged back in to the GUI. If you
were to try this on your system, you would no longer be able to start any administrative
configuration tools, and you would not have access to the sudo and su commands.

On some networks, you may want to change the role of future users to user_u. If you
don’t want regular users tinkering with administrative tools, you could make that change for
future default users with the following command:

semanage login -m -S targeted -s "user_u" -r s0 __default__

User Context Features

guest_u No GUI, no networking, no access to the su or sudo
command, no file execution in /home or /tmp

xguest_u GUI, networking only via the Firefox web browser, no file
execution in /home or /tmp

user_u GUI and networking available
staff_u GUI, networking, and the sudo command available
sysadm_u GUI, networking, and the sudo and su commands available
unconfined_u Full system access

	 TABLE 4-11	  

Options for
SELinux User Roles

218  Chapter 4  RHCSA-Level Security Options

This command modifies (-m) the targeted policy store (-S), with SELinux user (-s)
user_u, with the MLS s0 range (-r) for the default user. Here, “__default__” includes two
underscore characters on each side of the word. As long as user_u is in effect for the default
SELinux user, regular users won’t have access to use administrative tools or commands such
as su and sudo. The following command reverses the process:

semanage login -m -S targeted -s "unconfined_u" \
-r s0-s0:c0.c1023 __default__

The MLS policy adds
complexity to SELinux. The targeted default
policy with appropriate booleans and file

contexts normally provides more than
adequate security.

The full MLS range is required (s0-s0:c0.c1023) because the unconfined_u user is not
normally limited by MLS restrictions.

Manage SELinux Boolean Settings
Most SELinux settings are boolean—in other words, they’re activated and deactivated by
setting them to 1 or 0, respectively. Once set, the booleans can be retrieved from the
/sys/fs/selinux/booleans directory. One simple example is selinuxuser_ping, which is
normally set to 1, which allows users to run the ping and traceroute commands. Many of
these SELinux settings are associated with specific RHCE services and will be covered in the
second half of this book.

These settings can be read with the getsebool and modified with the setsebool commands.
For example, the following output from the getsebool user_exec_content command confirms
that SELinux allows users to execute scripts either in their home directories or from the /tmp
directory:

user_exec_content --> on

This default applies to SELinux user_u users. In other words, with this boolean, such
users can create and execute scripts in the noted directories. That boolean can be disabled
either temporarily or in a way that survives a reboot. One method for doing so is with the
setsebool command. For example, the following command disables the noted boolean until
the system is rebooted:

setsebool user_exec_content off

A Security-Enhanced Linux Primer  219

You can choose to substitute =0 for off in the command. As this is a boolean setting,
the effect is the same: the flag is switched off. However, the -P switch is required to make
the change to the boolean setting survive a system reboot. Be aware, the changes don’t take
effect until the next time the affected user actually logs in to the associated system.

A full list of available booleans is available in the output to the getsebool -a command.
For more information on each boolean, run the semanage boolean -l command.

Although the output includes descriptions of all available booleans, it is a database that can
be searched with the help of the grep command.

List and Identify SELinux File Contexts
If you’ve enabled SELinux, the ls -Z command lists current SELinux file contexts, as shown
earlier in Figure 4-10. As an example, take the relevant output for the anaconda-ks.cfg file
from the /root directory:

-rw-------. root root system_u:object_r:admin_home_t:s0
anaconda-ks.cfg

The output includes the regular ugo/rwx ownership and permission data. It also specifies
four elements of SELinux security: the user, role, type, and MLS level for the noted file.
Generally, the SELinux user associated with a file is system_u or unconfined_u, and this
generally does not affect access. In most cases, files are associated with an object_r, an
object role for the file. It’s certainly possible that future versions of the SELinux targeted
policy will include more fine-grained options for the user and role.

The key file context is the type, in this case, admin_home_t. When you configured FTP
and HTTP servers in Chapter 1, you changed the type of the configured directory and the
files therein to match the default type of shared files from those services with the chcon
command.

For example, to configure a nonstandard directory for an FTP server, make sure the
context matches the default FTP directory. Consider the following command:

ls -Z /var/ftp/
drwxr-xr-x. root root system_u:object_r:public_content_t pub

The contexts are the system user (system_u) and system objects (object_r) for type
sharing with the public (public_content_t). If you create another directory for FTP service,
you’ll need to assign the same security contexts to that directory. For example, if you create
an /ftp directory as the root user and run the ls -Zd /ftp command, you’ll see the contexts
associated with the /ftp directory as shown:

drwxr-xr-x. root root unconfined_u:object_r:root_t /ftp

220  Chapter 4  RHCSA-Level Security Options

To change the context, use the chcon command. If there are subdirectories, you’ll want
to make sure changes are made recursively with the -R switch. In this case, to change the
user and type contexts to match /var/ftp, run the following command:

chcon -R -u system_u -t public_content_t /ftp

If you want to support uploads to your FTP server, you’ll have to assign a different type
context, specifically public_content_rw_t. That corresponds to the following command:

chcon -R -u system_u -t public_content_rw_t /ftp

In Chapter 1, you used a different variation on the chcon command. To use that lesson,
the following command uses user, role, and context from the /var/ftp directory and applies
the changes recursively:

chcon -R --reference /var/ftp /ftp

But wait, what happens if a filesystem gets relabeled? The changes made with chcon
won’t survive a filesystem relabeling because all file contexts will be reset to the default
values defined in the SELinux policy. Hence, we need a way to modify the rules that define
the default file context for each file. This subject will be covered in the next section.

Using restorecon is the preferred way to change file contexts because it sets the
contexts to the values configured in the SELinux policy. The chcon command can
modify file contexts to any value passed as an argument, but the change may not
survive a filesystem relabeling if a context differs from the default value defined
in the SELinux policy. Hence, to avoid mistakes, you should modify contexts
in the SELinux policy with semanage fcontext and use restorecon to change file
contexts.

Restore SELinux File Contexts
Default contexts are configured in /etc/selinux/targeted/contexts/files/file_contexts. If you
make a mistake and want to restore the original SELinux settings for a file, the restorecon
command restores those settings based on the file_contexts configuration file. However, the
defaults in a directory may vary. For example, the following command (with the -F switch
forcing a change to all contexts rather than just the type context) leads to a different set of
contexts for the /ftp directory:

restorecon -F /ftp
ls -Zd /ftp
drwxr-xr-x. root root system_u:object_r:default_t ftp

A Security-Enhanced Linux Primer  221

You may notice that the user context is different from when the /ftp directory was
created. That’s due to the first line in the aforementioned file_contexts file, which applies the
noted contexts:

/.* system_u:object_r:default_t:s0

You may also list all default file contexts rules in file_contexts with the semanage
fcontext -l command. See Figure 4-11 for an excerpt of the output.

As you can see, SELinux context definitions use regular expressions, such as the
following:

(/.*)?

The preceding regular expression matches the / character, followed by an arbitrary
number of characters (the .*). The ? character means that the entire regular expression
within parentheses can be matched zero or one time. Hence, the overall result is to match
a / followed by an arbitrary amount of characters, or nothing. This regular expression is
widely used to match a directory and all the files in it.

As an example, a regular expression that matches the /ftp directory and all files in it is
given by the following:

/ftp(/.*)?

Using this regular expression, we can define a SELinux policy rule that assigns to the
/ftp directory and all files in it a default type context. This can be done with the semanage
fcontext -a command. For example, the following command assigns a default type context
of public_content_t to the /ftp directory and all the files in it:

semanage fcontext -a -t public_content_t '/ftp(/.*)?'

Once you have defined a new default policy context for a filesystem path, you can run
the restorecon command to set the contexts to the corresponding default policy values.

	 FIGURE 4-11	   SELinux context definitions

222  Chapter 4  RHCSA-Level Security Options

The following command restores the context recursively (-R) to the public_content_t value
defined previously:

restorecon -RF /ftp
ls -Zd /ftp
drwxr-xr-x. root root system_u:object_r:public_content_t ftp

Identify SELinux Process Contexts
As discussed in Chapter 9, the ps command lists currently running processes. In a SELinux
system, there are contexts for each running process. To see those contexts for all processes
currently in operation, run the ps -eZ command, which lists every (-e) process SELinux
context (-Z). Figure 4-12 includes a varied excerpt from the output of that command on
our system.

Although the user and role don’t change often, the process type varies widely, frequently
matching the purpose of the running process. For example, from the bottom of the figure,
you can see how the Avahi daemon (avahi-daemon) is matched by the avahi_t SELinux
type. You should be able to identify how at least some of the other SELinux types match the
associated service.

In other words, although there is a large variety of SELinux types, they’re consistent with
the running process.

	 FIGURE 4-12	  

SELinux security
contexts of
different processes

A Security-Enhanced Linux Primer  223

Diagnose and Address SELinux Policy Violations
If there’s a problem, SELinux is running in enforcing mode, and you’re sure there are no
problems with the target service or application, don’t disable SELinux! Red Hat has made it
easier to manage and troubleshoot. According to Red Hat, the top two causes of SELinux-
related problems are contexts and boolean settings.

SELinux Audits
Problems with SELinux should be documented in the associated log file, audit.log, in the
/var/log/audit directory. The file may be confusing, especially the first time you read it. A
number of tools are available to help decipher this log.

First, the audit search (ausearch) command can help filter for specific types of problems.
For example, the following command lists all SELinux events associated with the use of the
sudo command:

ausearch -m avc -c sudo

Such events are known as Access Vector Cache (-m avc) messages; the -c allows you to
specify the name commonly used in the log, such as httpd or su. If you’ve experimented
with the user_u SELinux user described earlier in this chapter, there should be several
related messages available from the audit.log file.

Even for most administrators, the output is still a lot of gobbledygook. However, it should
include identifying information such as the audited user ID (shown as auid), which can help
you identify the offending user. Perhaps the user needs such access, or perhaps that user’s
account has been compromised. In any case, the alert may cause you to pay more attention
to that account.

In contrast, the sealert -a /var/log/audit/audit.log command may provide more clarity.
An excerpt is shown in Figure 4-13.

SELinux Label and Context Issues
Considering Figure 4-13 and the SELinux concepts described so far, you might wonder
if the user in question is allowed to run the su command. If the problem were in the
/etc/sudoers file covered in Chapter 8, the SELinux alert message might not even appear. So
you should pay attention to the source and target contexts. As they match, the file context is
not the issue.

By process of elimination, that points to the user context described earlier as the
problem. The UID of the user in question should be listed later in the file, under “Raw
Audit Messages.” If the user in question requires access to the su and sudo commands,
you should change the role of that user with the semanage login command described
earlier. Otherwise, the user might just be experimenting with Linux. Any access to the sudo
command will be documented in the /var/log/secure log file.

224  Chapter 4  RHCSA-Level Security Options

SELinux Boolean Issues
After deactivating the user_exec_content boolean described earlier, we created a simple
script named script1 for a user governed by the user_u label. After making that script
executable, we tried running it with the /home/examprep/script1 command. Even though
that user had ownership of the file, with executable permissions set, that attempt led to the
following message:

-bash: /home/examprep/script1: Permission denied

That led to the log excerpt shown in Figure 4-14. Note the section on the top; it explicitly
cites the command required to address the problem. As an administrator, you need to
decide whether such users should be given the ability to execute their own scripts. If so,
then the noted command would address the problem.

	 FIGURE 4-13	  

A SELinux alert

A Security-Enhanced Linux Primer  225

The GUI SELinux Administration Tool
If you’ve taken the time to learn SELinux from the command line, this section should be just
a review. For many users, the easiest way to change SELinux settings is with the SELinux
Administration tool, which you can start with the system-config-selinux command. As
shown in Figure 4-15, it starts with a basic view of the status of SELinux on the local system,
reflecting some of the information shown in the output to the sestatus command.

As you can see, there are options labeled Default Enforcing Mode and Current Enforcing
Mode, which you can set to Enforcing, Permissive, or Disabled. Although the focus of
SELinux is on a Targeted policy, MLS is also available if you install the selinux-policy-mls
package. Generally, you don’t need to activate the Relabel On Next Reboot option unless
you’ve changed the default policy type.

There are a number of categories shown in the left pane of the SELinux Management
Tool window described in the following sections. In the RHCE half of this book, you’ll
revisit this tool with more of a focus on boolean settings.

SELinux Boolean Settings
In the SELinux Administration tool, click Boolean in the left panel. Scroll through available
modules. As you can see, a SELinux policy can be modified in a number of different

	 FIGURE 4-14	  

A SELinux alert
and a solution

226  Chapter 4  RHCSA-Level Security Options

categories, some related to administrative functions, others to specific services. A select
number of these options are shown in Figure 4-16. Any changes you make are reflected in
boolean variables in the /sys/fs/selinux/booleans directory. Module categories of interest for
the RHCSA exam include cron, mount, virt, and that catch-all category: unknown. A list of
selected booleans is included in Table 4-12. The booleans appear in the order shown in the
SELinux Management tool.

File Labeling
You can change the default labels associated with files, some of which are described earlier
in this chapter (and in other chapters discussing SELinux contexts). Some of the options are
shown in Figure 4-17. Any changes to this screen are written to the file_contexts.local file in
the /etc/selinux/targeted/contexts/files directory.

User Mapping
The User Mapping section allows you to go beyond the defaults for regular and
administrative users. The display here illustrates the current output to the semanage login -l

	 FIGURE 4-15	   SELinux status in the Administration tool

A Security-Enhanced Linux Primer  227

Boolean Description

fcron_crond Supports fcron rules for job scheduling
cron_can_relabel Allows cron jobs to change the SELinux file context label
mount_anyfile Permits the use of the mount command on any file
daemons_use_tty Lets service daemons use terminals as needed
daemons_dump_core Supports writing of core files to the top-level root directory
virt_use_nfs Supports the use of NFS filesystems for virtual machines
virt_use_comm Supports a connection for virtual machines to serial and parallel ports
virt_use_usb Supports the use of USB devices for virtual machines
virt_use_samba Supports the use of CIFS (Common Internet File System) filesystems for

virtual machines
guest_exec_content Allows guest_u users the right to execute scripts
xguest_exec_content Allows xguest_u users the right to execute scripts
user_exec_content Allows user_u users the right to execute scripts
staff_exec_content Allows staff_u users the right to execute scripts
sysadm_exec_content Allows sysadm_u users the right to execute scripts

	 TABLE 4-12	   Selected SELinux Boolean Options

	 FIGURE 4-16	   Booleans in the SELinux Administration tool

228  Chapter 4  RHCSA-Level Security Options

command. If you don’t remember the intricacies of the semanage command, it may be easier
to use this screen to map existing users to different contexts. Click Add to open the Add User
Mapping window shown in Figure 4-18. This figure also illustrates how you might reclassify
a user named michael as a SELinux user_u user type.

SELinux User
The SELinux User section allows you to specify and modify default roles for standard
users, such as regular users (user_u), system users (system_u), and unconfined users
(unconfined_u).

Network Port
The Network Port section associates standard ports with services.

Policy Module
The Policy Module section specifies the SELinux policy version number applied to each module.

	 FIGURE 4-17	   File types in the SELinux Administration tool

A Security-Enhanced Linux Primer  229

Process Domain
The Process Domain allows you to change the status of SELinux to Permissive or Enforcing
mode for a single process domain, rather than for the whole system.

The SELinux Troubleshoot Browser
RHEL 7 includes the SELinux Troubleshoot Browser shown in Figure 4-19. It provides tips
and advice on any problems you may encounter in a language that Linux administrators can
understand, often including commands that you can run and that will address the subject
problem.

To start the browser from the GNOME desktop, click Applications | Sundry | SELinux
Troubleshooter or run sealert -b from a GUI-based command line. The command is
available from the setroubleshoot-server package.

	 FIGURE 4-18	   Map a user in the SELinux Management tool.

230  Chapter 4  RHCSA-Level Security Options

EXERCISE 4-3

Test a SELinux User Type
In this exercise, you’ll configure a user with the staff_u SELinux user type and test the results.
You’ll need a GUI and at least one regular user other than the root administrative user.

1.	 If necessary, create a regular user. Even if you already have a regular user, a second
regular user for the purpose of this exercise may reduce risks. Users can always be
deleted, as discussed in Chapter 8. To that end, the useradd user1 and passwd user1
commands create a user named user1 with a password.

2.	 Review the SELinux types of current users with the semanage login -l command.
3.	 Configure the desired user as a staff_u user with the semanage login -a -s staff_u

user1 command. Substitute as desired for user1.
4.	 If you’re completely logged in to the GUI, log out. Click System | Log Out, and click

Log Out in the window that appears.

	 FIGURE 4-19	   Security alerts with the SELinux Troubleshoot Browser

A Security-Enhanced Linux Primer  231

5.	 Log in to the GUI with the newly revised staff_u account, user1 (or whatever else
you may have configured in Step 3). If you don’t already see a GUI login screen, press
alt-f1 or alt-f7.

6.	 Try various administrative commands. Do you have access to the su command?
What of sudo? You may want to review this exercise after reading Chapter 8 if you
don’t know how to use sudo. What administrative tools discussed so far in this
book are accessible? Is there a difference whether that tool is started from the GUI
command line or from the GUI menu?

7.	 Log out of the new user1 account, and log back in to the regular account.
8.	 Delete the new user from the staff_u list; if that’s user1, you can do so with the

semanage login -d user1 command.
9.	 Confirm the restored configuration with the semanage login -l command.

SCENARIO & SOLUTION
A file can’t be read, written to, or executed. Review current ownership and permissions with the

ls -l command. Apply ownership changes with the
chown and chgrp commands. Apply permission
changes with the chmod command.

Access to a secure file is required for a single
user.

Configure an ACL using the setfacl command to
provide access.

The SSH service is not accessible on a server. Assuming the SSH service is running (a RHCE
requirement), make sure the firewall supports SSH
access with the firewall-cmd --list-all command;
revise as needed with the firewall-config tool.

Enforcing mode is not set for SELinux. Set enforcing mode with the setenforce enforcing
command. Check the default boot settings in
/etc/selinux/config.

Need to restore SELinux default file contexts on
a directory.

Apply the restorecon -F command to the target
directory. Use the -R switch to change the contexts
recursively for all files and subdirectories.

Unexpected failure when SELinux is set in
enforcing mode.

Use the sealert -a /var/log/audit/audit.log
command or the SELinux Troubleshooter to find
more information about the failure; sometimes a
suggested solution is included.

Need to change SELinux options for a user. Apply the setsebool -P command to the appropriate
boolean setting.

232  Chapter 4  RHCSA-Level Security Options

CERTIFICATION SUMMARY
This chapter focused on the basics of RHCSA-level security. On any Linux system, security
starts with the ownership and permissions associated with a file. Ownership may be divided
into users, groups, and others. Permissions may be divided into read, write, and execute in
a scheme known as discretionary access controls. Default file permissions are based on the
value of umask for a user. Permissions may be extended with the SUID, SGID, and sticky bits.

ACLs can add another dimension to discretionary access controls. When configured on
a mounted volume, ACLs can be configured to supersede basic ugo/rwx permissions. ACLs
can be included in NFSv4 shared directories.

Firewalls can prevent communication on all but the desired ports. Standard ports for
most services are defined in the /etc/services file. However, some services may not use all of
the protocols defined in that file. The default RHEL 7 firewall supports access only to a local
SSH server.

The ssh-keygen command creates passphrase-protected key pairs, which can be used to
authenticate to an SSH server without transmitting a user’s password over the network.

SELinux provides another layer of protection using mandatory access control. With a
variety of available SELinux users, objects, file types, and MLS ranges, SELinux controls can
help ensure that a breach in one service doesn’t lead to trouble with other services.

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in Chapter 4.

Basic File Permissions
❑❑ Standard Linux file permissions are read, write, and execute, which may vary for the

user owner, the group owner, and other users.
❑❑ Special permissions include the SUID, SGID, and sticky bits.
❑❑ Default user permissions are based on the value of the umask.
❑❑ Ownership and permissions can be changed with the chown, chgrp, and chmod

commands.
❑❑ Special file attributes can be listed with the lsattr command and modified by the

chattr command.

Two-Minute Drill  233

Access Control Lists and More
❑❑ ACLs can be listed and modified on filesystems mounted with the acl option. The

XFS and ext4 filesystems created on RHEL 7 have such an option enabled by default.
❑❑ Every file already has ACLs based on standard ownership and permissions.
❑❑ You can configure ACLs on a file to supersede standard ownership and permissions

for specified users and groups on selected files. Actual ACLs may depend on the mask.
❑❑ Custom ACLs on a file are not enough; selected users and groups also need access to

the directories that contain such files.
❑❑ Just as custom ACLs can support special access for selected users, they can also deny

access to other selected users.
❑❑ ACLs can be configured on shared NFS directories.

Basic Firewall Control
❑❑ Standard Linux firewalls are based on the Netfilter kernel system and on the

iptables tool.
❑❑ Standard Linux firewalls assume the use of some of the ports and protocols listed in

/etc/services.
❑❑ The default RHEL 7 firewall supports remote access to the local SSH server.
❑❑ The RHEL 7 firewall can be configured with the GUI firewall-config tool or the

console-based tool firewall-cmd command.

Securing SSH with Key-Based Authentication
❑❑ SSH configuration commands include ssh-keygen and ssh-copy-id.
❑❑ User home directories include their own .ssh subdirectory of configuration files, with

private and public SSH keys, suitable for passphrases.
❑❑ Private/public key pairs can be configured with passphrases using the ssh-keygen

command.
❑❑ Public keys can be transmitted to users’ home directories on remote systems with the

ssh-copy-id command.

A Security-Enhanced Linux Primer
❑❑ SELinux may be configured in enforcing, permissive, or disabled mode, with targeted

or MLS policies, with the help of the setenforce command. Default boot settings are
stored in the /etc/selinux/config file.

❑❑ User options for SELinux can be set with the semanage login command.

234  Chapter 4  RHCSA-Level Security Options

❑❑ SELinux labels contain different contexts, such as user, roles, types, and MLS levels.
❑❑ SELinux booleans can be managed with the setsebool command; permanent

changes require the -P switch.
❑❑ SELinux contexts can be changed with the chcon command and restored to defaults

with the restorecon command.
❑❑ The sealert command and the SELinux Troubleshoot Browser can be used to

interpret problems documented in the audit.log file in the /var/log/audit directory.

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. As no multiple choice questions appear on the Red Hat exams, no multiple choice questions
appear in this book. These questions exclusively test your understanding of the chapter. Getting results,
not memorizing trivia, is what counts on the Red Hat exams. There may be more than one right answer
to many of these questions.

Basic File Permissions

1.	 What command configures read and write permissions on the file named question1 in the local
directory, for the file owner, with no permissions for any other user?

2.	 What single command changes the user owner to professor and group owner to assistants for the
local file named question2?

3.	 What command would change the attributes of a file named question3 to allow you to only
append to that file?

Self Test  235

Access Control Lists and More

4.	 What command reads current ACLs for the local file named question4? Assume that file is on a
filesystem with ACL support enabled.

5.	 What single command gives members of the group named managers read access to the project5
file in the /home/project directory? Assume the managers group already has read and execute
access to the directory.

6.	 What command prevents members of the group named temps from having any access to the
secret6 file in the /home/project directory?

Basic Firewall Control

7.	 What TCP/IP port number is associated with the HTTP service?

8.	 List the full firewall-cmd command to permanently allow incoming HTTP traffic for the default
firewalld zone.

Securing SSH with Key-Based Authentication

9.	 What command configures a private/public key pair using DSA?

10.	 What subdirectory of a user home directory contains the authorized_keys file?

A Security-Enhanced Linux Primer

11.	 What command configures SELinux in enforcing mode?

12.	 What command lists the SELinux status of current users?

13.	 What command lists all boolean settings for SELinux?

236  Chapter 4  RHCSA-Level Security Options

LAB QUESTIONS
Several of these labs involve configuration exercises. You should do these exercises on test machines
only. It’s assumed that you’re running these exercises on virtual machines such as KVM and they’re not
used for production.

Red Hat presents its exams electronically. For that reason, most of the labs in this and future
chapters are available from the media that accompanies the book. For this chapter’s lab, look in the
Chapter4/ subdirectory. In case you haven’t yet set up RHEL 7 on a system, refer to Chapter 1 for
installation instructions.

The answers for each lab follow the Self Test answers for the fill-in-the-blank questions.

SELF TEST ANSWERS

Basic File Permissions

1.	 The command that configures read and write permissions on the file named question1 in the local
directory, with no permissions for any other user, is

chmod 600 question1

2.	 The single command that changes the user owner to professor and group owner to assistants for
the noted file is

chown professor.assistants question2

It’s acceptable to substitute a colon (:) for the dot (.).
3.	 The command that changes the attributes of a file named question3 to allow you to only append

to that file is

chattr +a question3

Self Test Answers  237

Access Control Lists and More

4.	 The command that reads current ACLs for the local file named question4 is

getfacl question4

5.	 The single command that gives members of the group named managers read access to the
project5 file in the /home/project directory is

setfacl -m g:managers:r /home/project/project5

6.	 The command that prevents members of the group named temps from having any access to the
secret6 file in the /home/project directory is

setfacl -m g:temps:- /home/project/secret6

Basic Firewall Control

7.	 The TCP/IP port number associated with the HTTP service is 80.
8.	 The firewall-cmd command that permanently allows incoming HTTP traffic for the default

firewalld zone is

firewall-cmd --permanent --add-service=http

Securing SSH with Key-Based Authentication

9.	 The command is ssh-keygen -t dsa.
10.	 Every user with public keys stored in the authorized_keys file can find that file in the

.ssh/ subdirectory of her home directory.

A Security-Enhanced Linux Primer

11.	 The command that configures SELinux in enforcing mode is

setenforce enforcing

12.	 The command that lists the SELinux status of current users is

semanage login -l

13.	 The command that lists all boolean settings for SELinux is

semanage boolean -l

238  Chapter 4  RHCSA-Level Security Options

LAB ANSWERS

Lab 1
Lab 1 is designed to let you practice configuring permissions associated with the SUID bit of
/usr/bin/passwd.

Lab 2
Lab 2 shows an approach to making a script owned by a user executable by another user. If the script
is properly executed by the ACL-configured regular user, you’ll find a file named filelist in the local
directory.

Lab 3
The configuration of ACLs on the /root administrative directory is a bad security practice. However,
it is an excellent way to illustrate the capabilities of ACLs on a system and how it can allow access by
selected regular users to the inner sanctums of the root administrative account. Because of the risks,
disable the ACLs when the lab is complete. If the selected user is michael, one method is with the
following command:

setfacl -b u:michael /root

Lab 4
This lab is designed to raise awareness of the time and effort required to disable and re-enable SELinux in
enforcing mode. If you switch between disabled and permissive mode, the time and effort required should
be about the same. If you have to reconfigure SELinux in enforcing mode, you may lose precious time
during a Red Hat exam because nothing else can be done while the system is being rebooted and relabeled.

Lab 5
Standard users in RHEL 7 run as unconfined_u SELinux user types. As such, there are few limits
on their user accounts. If instructions on an exam or from a corporate policy require certain limits
on regular users, you may want to set up the __default__ user with the SELinux user_u user type.
Alternatively, if you’re told to set up specific users to a limited type, such as xguest_u or staff_u,
multiple semanage login commands may be appropriate. If you need to review the syntax of the
semanage login command, run man semanage-login.

Lab Answers  239

Lab 6
After testing a user as a guest_u user, most administrators will want regular users to have more
privileges. However, the guest_u user is suitable for systems such as an edge server, where you want
user accounts to be locked down.

Lab 7
Users configured with the guest_u SELinux user type are normally allowed to execute scripts even in
their own home directories. That can change with the guest_exec_content boolean described in the lab.
Success in this lab is based on a simple comparison: whether a binary can be executed with and without
the active boolean.

Although the easiest way to restore the original configuration is with the GUI SELinux manage-
ment tool, you should also know how to use commands such as the following, which disables a custom
SELinux user type for user michael:

semanage login -d michael

Lab 8
Success in this lab can be measured first with the ls -Zd command. When applied to both the /ftp and
the /var/ftp/pub directories, it should lead to the same list of SELinux roles, objects, types, and MLS
options for each directory.

Then, run the restorecon -R /ftp command and check again the SELinux type of the /ftp directory.
If it has changed, it means you have missed the semanage fcontext command to modify the default file
contexts described in the chapter.

Lab 9
Everyone will experiment with SELinux in different ways. So the results of this lab are up to you. The
objective is to analyze a current relevant log file and process it at the command line. Try to identify the
problems associated with each alert. Although you may not be able to address many SELinux issues, at
least until the second half of this book, you should be able to identify the problems or at least the users
and/or commands associated with each alert.

	_GoBack

